knitr::opts_chunk$set(fig.width=7, fig.asp=0.618) library("breastCancerVDX") library(Biobase) library(gpowerr)
data(vdx) patientdata <- pData(vdx) expressions <- t(exprs(vdx))
pca_results <- prcomp(expressions) pca_pev <- pca_results$sdev[1]^2/sum(pca_results$sdev^2)
results <- rep(0, length(1:50)) for (i in 1:50) { pow <- gpower(data = expressions, k=1, rho = i/50, reg = "l1", center = TRUE) results[i] <- pow$exp_var * pca_pev * pow$prop_sparse }
plot
png("figures/ISplot.png", width = 600, height = 370, res=80) plot(1:50/50, results, xlab="rho", ylab="Index of Sparseness") dev.off() max(results) which.max(results) / 50
final weights
power <- gpower(data = expressions, k = 1, rho = 0.16) scores <- power$scores
scores <- scores[!is.na(patientdata$grade)] graded <- patientdata$grade[!is.na(patientdata$grade)] cor(scores, graded) cor.test(scores, graded)
genes <- row.names(power$weights)[power$weights != 0] genes write.table(genes, "genes.txt", quote = FALSE, col.names = FALSE, row.names = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.