# Copyright 2022-2023 Integrated Ecological Research and Poisson Consulting Ltd.
# Copyright 2024 Province of Alberta
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
predict_trend <- function(fit, derived_expr) {
samples <- samples(fit)
data <- augment(fit)
new <- new_data_ym(data, year = TRUE, month = FALSE)
x <- .predict(new_data = new, samples = samples, derived_expr = derived_expr)
x$data$Month <- NA
x
}
#' Predict Recruitment Trend
#'
#' Predict recruitment by year as trend line.
#' Recruitment fit object provided must be created with `year_trend = TRUE`.
#'
#' @inheritParams params
#' @return A tibble of the predicted estimates.
#' @export
#' @family analysis
bb_predict_recruitment_trend <- function(recruitment,
sex_ratio = 0.5,
conf_level = 0.95,
estimate = median,
sig_fig = 5) {
chkor_vld(.vld_fit(recruitment), .vld_fit_ml(recruitment))
chk_s3_class(recruitment, "bboufit_recruitment")
.chk_year_trend(recruitment)
chk_number(sex_ratio)
chk_range(sex_ratio)
chk_range(conf_level)
chk_function(estimate)
chk_whole_number(sig_fig)
predicted <- predict_trend(
fit = recruitment,
derived_expr = derived_expr_recruitment_trend()
)
rec <- predicted$samples
class(rec) <- "mcmcarray"
rec <- rec * sex_ratio
rec <- rec / (1 + rec)
coef <- predict_coef(
samples = rec,
new_data = predicted$data,
conf_level = conf_level,
estimate = estimate,
sig_fig = sig_fig
)
coef
}
#' Predict Calf-Cow Ratio Trend
#'
#' Predict calves per adult female by year as trend line.
#' Recruitment fit object provided must be created with `year_trend = TRUE`.
#'
#' @inheritParams params
#' @return A tibble of the predicted estimates.
#' @export
#' @family analysis
bb_predict_calf_cow_ratio_trend <- function(recruitment,
conf_level = 0.95,
estimate = median,
sig_fig = 5) {
chkor_vld(.vld_fit(recruitment), .vld_fit_ml(recruitment))
chk_s3_class(recruitment, "bboufit_recruitment")
.chk_year_trend(recruitment)
chk_range(conf_level)
chk_function(estimate)
chk_whole_number(sig_fig)
predicted <- predict_trend(
fit = recruitment,
derived_expr = derived_expr_recruitment_trend()
)
coef <- predict_coef(
samples = predicted$samples,
new_data = predicted$data,
conf_level = conf_level,
estimate = estimate,
sig_fig = sig_fig
)
coef
}
#' Predict Survival Trend
#'
#' Predict survival by year as trend line.
#' Survival fit object provided must be created with `year_trend = TRUE`.
#'
#' @inheritParams params
#' @return A tibble of the predicted estimates.
#' @export
#' @family analysis
bb_predict_survival_trend <- function(survival,
conf_level = 0.95,
estimate = median,
sig_fig = 5) {
chkor_vld(.vld_fit(survival), .vld_fit_ml(survival))
chk_s3_class(survival, "bboufit_survival")
.chk_year_trend(survival)
chk_range(conf_level)
chk_function(estimate)
chk_whole_number(sig_fig)
predicted <- predict_trend(
fit = survival,
derived_expr = derived_expr_survival_trend()
)
coef <- predict_coef(
samples = predicted$samples,
new_data = predicted$data,
conf_level = conf_level,
estimate = estimate,
sig_fig = sig_fig
)
coef
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.