knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE) devtools::load_all() library(dplyr) library(sf)
title: "presentation SC april 2019 : The agrometeoR package" author: "Thomas Goossens" date: "4/23/2019" always_allow_html: yes output: revealjs::revealjs_presentation: css: - "~/Documents/code/pokyah/craw-reveal-template/theme/craw.css" center: no highlight: pygments incremental: yes self_contained: true slide_level: 2 theme: default transition: slide fig_caption: false reveal_options: previewLinks: false md_document: toc: no toc_depth: 6 variant: markdown_github word_document: toc: no toc_depth: '6' pdf_document: default odt_document: fig_height: 5 fig_width: 7 html_document: theme: default toc: yes toc_depth: 6 toc_float: collapsed: yes smooth_scroll: yes
1 EC = 1 unique combination of
explorative_constructions = read.csv2("./explorative_constructions.csv", sep = ";") %>% dplyr::mutate_all(.funs = as.factor) knitr::kable(head(explorative_constructions))
The agrometeoR package offers a function for this : makeBatchOfBenchExp
# example bmrsResults = makeBatchOfBenchExp( tasks = tasks, learners = agrometeorLearners, measures = list(rmse, mae, mse), keep.pred = TRUE, models = FALSE, grouping = 100, level = "mlr.benchmark", resamplings = "LOO", cpus = 4 )
bash
in a tmux session
01/01/2016 -> 31/12/2017, 5 learners (KED, OK, NN1, IDW, MultiReg), with elevation as explanatory for KED, OK, and multiple linear reg.
hourly_tsa_pameseb_rmse = read.csv2("~/Desktop/sc_april_2019/tsa hourly Pameseb summary stats rmse.csv", sep = ",") knitr::kable(hourly_tsa_pameseb_rmse)
hourly_tsa_pameseb_IRM_rmse = read.csv2("~/Desktop/sc_april_2019/tsa hourly Pameseb_IRM summary stats rmse.csv", sep = ",") knitr::kable(hourly_tsa_pameseb_IRM_rmse)
hourly_tsa_pameseb_residuals = read.csv2("~/Desktop/sc_april_2019/tsa hourly Pameseb summary stats residuals.csv", sep = ",") knitr::kable(hourly_tsa_pameseb_residuals)
hourly_tsa_pameseb__IRM_residuals = read.csv2("~/Desktop/sc_april_2019/tsa hourly Pameseb_IRM summary stats residuals.csv", sep = ",") knitr::kable(hourly_tsa_pameseb__IRM_residuals)
daily_tsamax_pameseb_rmse = read.csv2("~/Desktop/sc_april_2019/tsamax daily Pameseb summary stats rmse.csv", sep = ",") knitr::kable(daily_tsamax_pameseb_rmse)
daily_tsamax_pameseb_IRM_rmse = read.csv2("~/Desktop/sc_april_2019/tsamax daily Pameseb_IRM summary stats rmse.csv", sep = ",") knitr::kable(daily_tsamax_pameseb_IRM_rmse)
daily_tsamax_pameseb_residuals = read.csv2("~/Desktop/sc_april_2019/tsamax daily Pameseb summary stats residuals.csv", sep = ",") knitr::kable(daily_tsamax_pameseb_residuals)
daily_tsamax_pameseb_IRM_residuals = read.csv2("~/Desktop/sc_april_2019/tsamax daily Pameseb_IRM summary stats residuals.csv", sep = ",") knitr::kable(daily_tsamax_pameseb_IRM_residuals)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.