The same data flightData
plotted 3 different ways.
library(PowerKyleTools) library(ggplot2) flightData <- read.csv("http://users.stat.umn.edu/~almquist/3811_examples/all_alaska_flights.csv") ggplot2::ggplot(data = flightData, mapping = aes(x = dep_delay, y = arr_delay)) + geom_boxplot() ggplot2::ggplot(data = flightData, mapping = aes(x = dep_delay, y = arr_delay)) + geom_point() ggplot2::ggplot(data = flightData, mapping = aes(x = dep_delay, y = arr_delay)) + geom_smooth()
Calling func1
on a data set will return a list containing the mean, variance, and standard deviation without running any data checks.
Calling func2
on a data set will also return a list containing the mean, variance, and standard deviation, but first will check the data to make sure it is compatible.
library(PowerKyleTools) d <- read.table(url("http://www.stat.umn.edu/geyer/3701/data/q1p4.txt"),header = TRUE) func1(d)
Calling func3
on a vector will compute the Maximum Liklihood Estimation for a gamma distribution and return the scalar result.
library(PowerKyleTools) v <- (1:10) func3(v)
Calling func4
on a data.frame will compute the weighted mean, variance, and standard deviation and return it as a list.
library(PowerKyleTools) d <- read.table(url("http://www.stat.umn.edu/geyer/3701/data/q1p4.txt"),header = TRUE) func4(d)
Calling func5
on a data.frame will compute the weighted mean, variance, and standard deviation and return it as a list, but will first check to make sure data frame contains compatible data.
library(PowerKyleTools) d <- read.table(url("http://www.stat.umn.edu/geyer/3701/data/q1p4.txt"),header = TRUE) func5(d)
Calling func6
on a data set will run a check to make sure that data is compatible, and will throw an error if data is not numeric, finit, zero lenth, NA, NAN.
library(PowerKyleTools) d <- read.table(url("http://www.stat.umn.edu/geyer/3701/data/q1p4.txt"),header = TRUE) func6(d)
Use func7
to compute the liklihood of a given distribution for data x, and return the scalar result.
library(PowerKyleTools) x1 = rgamma(100,3) func1 = function(theta, x) dgamma(x, shape = theta, log = TRUE) result7_gamma <- func7(x1,func1,c(0,3))
Use matMult
to compute the scalar result of $$x^T A^{-1} x$$
library(PowerKyleTools) load(url("http://www.stat.umn.edu/geyer/3701/data/q2p1.rda")) matMult(a, x)
Use stdize
to compute the standardized result of a 2-D matrix by column.
library(PowerKyleTools) load(url("http://www.stat.umn.edu/geyer/3701/data/q2p1.rda")) stdize(a)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.