knitr::opts_chunk$set(echo = TRUE)
library(shiny)
library(ggplot2)
library(Hmisc)
library(agricolae)
library(shinyWidgets)
library(shinycssloaders)
library(dplyr)
library(gtools)
library(knitr)
library(kableExtra)
library(magrittr)

RESULT

RBD ANALYSIS

csvfile <- reactive({
  csvfile <- input$file1
  if (is.null(csvfile)) {
    return(NULL)
  }
  dt <- read.csv(csvfile$datapath, header = input$header, sep = ",")
  dt
})

if (input$submit > 0) {
  d <- as.data.frame(csvfile())
  r <- as.numeric(input$rep)
  t <- as.numeric(input$trt)
  response <- d[, input$yield]
  treatment <- d[, input$treatment]
  replication <- d[, input$Replication]
  treatment <- factor(treatment)
  replication <- factor(replication)
  anvaTable <- lm(response ~ treatment + replication)
  result <- as.data.frame(anova(anvaTable))
  out <- agricolae::LSD.test(csvfile()[, input$yield], csvfile()[, input$treatment], result[3, 1], result[3, 3])
  trtmeans <- out$means
   trtmeans <- trtmeans[ gtools::mixedsort(row.names(trtmeans)), ]
  colnames(trtmeans)[1] <- "Treatment_means"
  drops <- c("r", "Q25", "Q50", "Q75","se")
  trtmeans <- trtmeans[, !(names(trtmeans) %in% drops)]
  kable(trtmeans, caption = "Treatment mean and other statistics", digits = 3, align = "c", row.names = TRUE) %>% kable_styling() %>% kable_paper("hover", full_width = F)
}
tags$br()
################ anova table

if (input$submit > 0) {
  d <- as.data.frame(csvfile())
  r <- as.numeric(input$rep)
  t <- as.numeric(input$trt)
  response <- d[, input$yield]
  treatment <- d[, input$treatment]
  replication <- d[, input$Replication]
  treatment <- factor(treatment)
  replication <- factor(replication)
  anvaTable <- lm(response ~ treatment + replication)
  result <- as.data.frame(anova(anvaTable))
  SoV <- c("Treatment", "Replication", "Error")
  final <- cbind(SoV, result)
  kable(final, caption = "ANOVA TABLE", digits = 3, align = "c", row.names = FALSE) %>% kable_styling() %>% kable_paper("hover", full_width = F)
}
tags$br()
############################################## SEM
if (input$submit > 0) {
  d <- as.data.frame(csvfile())
  r <- as.numeric(input$rep)
  t <- as.numeric(input$trt)
  response <- d[, input$yield]
  treatment <- d[, input$treatment]
  replication <- d[, input$Replication]
  treatment <- factor(treatment)
  replication <- factor(replication)
  anvaTable <- lm(response ~ treatment + replication)
  result <- as.data.frame(anova(anvaTable))
  out <- LSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3])
  colnam <- c("MSE", "SE(d)", "SE(m)", "CV")
  stat <- out$statistics
  MSE <- stat[1, 1]
  SED <- sqrt((2 * MSE) / r)
  SEM <- sqrt(MSE / r)
  CV <- stat[1, 4]
  Result <- cbind(MSE, SED, SEM, CV)
  colnames(Result) <- colnam
  kable(Result, caption = "SEM & Other statistics", digits = 3, align = "c") %>% kable_styling() %>% kable_paper("hover", full_width = F)
}
tags$br()
if (input$submit > 0) {
  d <- as.data.frame(csvfile())
  r <- as.numeric(input$rep)
  t <- as.numeric(input$trt)
  response <- d[, input$yield]
  treatment <- d[, input$treatment]
  replication <- d[, input$Replication]
  treatment <- factor(treatment)
  replication <- factor(replication)
  anvaTable <- lm(response ~ treatment + replication)
  result <- as.data.frame(anova(anvaTable))
  if (result[1, 5] <= 0.05) {
    cat("Since the P-value in ANOVA table is < 0.05,\nthere is a significant difference between atleast a pair of treatments,\nso multiple comparison is required to identify best treatment(s)")
  }
  if (result[1, 5] > 0.05) {
    cat("Treatment means are not significantly different")
  }
}
############################### CD and measures
tags$br()
if (input$submit > 0) {
  d <- as.data.frame(csvfile())
  r <- as.numeric(input$rep)
  t <- as.numeric(input$trt)
  response <- d[, input$yield]
  treatment <- d[, input$treatment]
  replication <- d[, input$Replication]
  treatment <- factor(treatment)
  replication <- factor(replication)
  anvaTable <- lm(response ~ treatment + replication)
  result <- as.data.frame(anova(anvaTable))
  if (result[1, 5] > 0.05) {
    return()
  }

  else if (input$req == "lsd") {
    d <- as.data.frame(csvfile())
    r <- as.numeric(input$rep)
    t <- as.numeric(input$trt)
    response <- d[, input$yield]
    treatment <- d[, input$treatment]
    replication <- d[, input$Replication]
    treatment <- factor(treatment)
    replication <- factor(replication)
    anvaTable <- lm(response ~ treatment + replication)
    result <- as.data.frame(anova(anvaTable))
    out <- agricolae::LSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3])
    colnam <- c("MSE", "SE(d)", "SE(m)", "CD", "t value", "CV")
    stat <- out$statistics
    MSE <- stat[1, 1]
    SED <- sqrt((2 * MSE) / r)
    SEM <- sqrt(MSE / r)
    CD <- stat[1, 6]
    t <- stat[1, 5]
    CV <- stat[1, 4]
    Result <- cbind(MSE, SED, SEM, CD, t, CV)
    colnames(Result) <- colnam
    kable(Result, caption = "LSD test", digits = 3, align = "c") %>% kable_styling() %>% kable_paper("hover", full_width = F)
  }
  else if (input$req == "dmrt") {
    d <- as.data.frame(csvfile())
    r <- as.numeric(input$rep)
    t <- as.numeric(input$trt)
    response <- d[, input$yield]
    treatment <- d[, input$treatment]
    replication <- d[, input$Replication]
    treatment <- factor(treatment)
    replication <- factor(replication)
    anvaTable <- lm(response ~ treatment + replication)
    result <- as.data.frame(anova(anvaTable))
    out <- agricolae::duncan.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
    Result <- out$duncan
    kable(Result, caption = "DMRT", digits = 3, align = "c") %>% kable_styling() %>% kable_paper("hover", full_width = F)
  }
  else if (input$req == "tukey") {
    d <- as.data.frame(csvfile())
    r <- as.numeric(input$rep)
    t <- as.numeric(input$trt)
    response <- d[, input$yield]
    treatment <- d[, input$treatment]
    replication <- d[, input$Replication]
    treatment <- factor(treatment)
    replication <- factor(replication)
    anvaTable <- lm(response ~ treatment + replication)
    result <- as.data.frame(anova(anvaTable))
    out <- agricolae::HSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, unbalanced = FALSE, console = FALSE)
    Result <- out$statistics
    kable(Result, caption = "Tukey's HSD", digits = 3, align = "c") %>% kable_styling() %>% kable_paper("hover", full_width = F)
  }
}
tags$br()
########################################### grouping
if (input$submit > 0) {
  d <- as.data.frame(csvfile())
  r <- as.numeric(input$rep)
  t <- as.numeric(input$trt)
  response <- d[, input$yield]
  treatment <- d[, input$treatment]
  replication <- d[, input$Replication]
  treatment <- factor(treatment)
  replication <- factor(replication)
  anvaTable <- lm(response ~ treatment + replication)
  result <- as.data.frame(anova(anvaTable))
  if (result[1, 5] > 0.05) {
    return()
  }

  else if (input$req == "lsd") {
    d <- as.data.frame(csvfile())
    r <- as.numeric(input$rep)
    t <- as.numeric(input$trt)
    response <- d[, input$yield]
    treatment <- d[, input$treatment]
    replication <- d[, input$Replication]
    treatment <- factor(treatment)
    replication <- factor(replication)
    anvaTable <- lm(response ~ treatment + replication)
    result <- as.data.frame(anova(anvaTable))
    out <- agricolae::LSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3])
    outgroup <- out$groups
    colnames(outgroup) <- c("trt_mean", "grouping")
    kable(outgroup, caption = "Treatment Grouping", align = "c") %>% kable_styling() %>% kable_paper("hover", full_width = F)
  }
  else if (input$req == "dmrt") {
    d <- as.data.frame(csvfile())
    r <- as.numeric(input$rep)
    t <- as.numeric(input$trt)
    response <- d[, input$yield]
    treatment <- d[, input$treatment]
    replication <- d[, input$Replication]
    treatment <- factor(treatment)
    replication <- factor(replication)
    anvaTable <- lm(response ~ treatment + replication)
    result <- as.data.frame(anova(anvaTable))
    out <- agricolae::duncan.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
    outgroup <- out$groups
    colnames(outgroup) <- c("trt_mean", "grouping")
    kable(outgroup, caption = "Treatment Grouping", align = "c") %>% kable_styling() %>% kable_paper("hover", full_width = F)
  }
  else if (input$req == "tukey") {
    d <- as.data.frame(csvfile())
    r <- as.numeric(input$rep)
    t <- as.numeric(input$trt)
    response <- d[, input$yield]
    treatment <- d[, input$treatment]
    replication <- d[, input$Replication]
    treatment <- factor(treatment)
    replication <- factor(replication)
    anvaTable <- lm(response ~ treatment + replication)
    result <- as.data.frame(anova(anvaTable))
    out <- agricolae::HSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, unbalanced = FALSE, console = FALSE)
    outgroup <- out$groups
    colnames(outgroup) <- c("trt_mean", "grouping")
    kable(outgroup, caption = "Treatment Grouping", align = "c") %>% kable_styling() %>% kable_paper("hover", full_width = F)
  }
}
############
if (input$submit > 0) {
  d <- as.data.frame(csvfile())
  r <- as.numeric(input$rep)
  t <- as.numeric(input$trt)
  response <- d[, input$yield]
  treatment <- d[, input$treatment]
  replication <- d[, input$Replication]
  treatment <- factor(treatment)
  replication <- factor(replication)
  anvaTable <- lm(response ~ treatment + replication)
  result <- as.data.frame(anova(anvaTable))
  if (result[1, 5] > 0.05) {
    return("")
  }
  if (input$req == "tukey" || input$req == "dmrt" || input$req == "lsd") {
    cat("Treatments with same letters are not significantly different")
  }
}

tags$br()
tags$br()

Report generated from: Package: grapesAgri1, Version 1.0.0



pratheesh3780/grapesAgri1 documentation built on Dec. 7, 2023, 5:49 a.m.