# Title : LR.R
# Objective : Linear Regression
# Created by: greyhypotheses
# Created on: 11/03/2022
# the data
data(sleepstudy)
# summary
summary(object = sleepstudy)
#' Linear Regression
#'
#'
# model
baseline <- lm(formula = Reaction ~ Days + Subject, data = sleepstudy)
summary(object = baseline)
best <- step(object = baseline)
summary(best)
# diagnostics
diagnostics <- sleepstudy %>%
mutate(standardised_res = rstandard(model = best),
fitted_value = best$fitted.values)
ggplot(data = diagnostics, mapping = aes(x = fitted_value, y = standardised_res)) +
geom_point(alpha = 0.25) +
geom_smooth(se = F, method = 'lm', formula = 'y ~ x') +
theme_minimal() +
theme(panel.grid.minor = element_blank(),
panel.grid.major = element_line(size = 0.05),
axis.title.x = element_text(size = 13, face = 'bold'), axis.text.x = element_text(size = 11),
axis.title.y = element_text(size = 13, face = 'bold'), axis.text.y = element_text(size = 11)) +
xlab(label = '\nFitted Value\n') +
ylab(label = '\nStandardised Residual\n')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.