edma_gdm | R Documentation |
Growth matrix and growth difference matrix based inference based on Lele and Richtsmeier (1992, 1995).
edma_gm(a1, a2, ...)
get_gm(object, ...)
## S3 method for class 'edma_gm'
get_gm(object, sort=FALSE, level=0.95,
what="all", ...)
edma_gdm(a1, a2, b1, b2, ...)
get_gdm(object, ...)
## S3 method for class 'edma_gdm'
get_gdm(object, sort=FALSE, level=0.95,
what="all", ...)
## S3 method for class 'edma_gm'
print(x, ...)
## S3 method for class 'edma_gdm'
print(x, ...)
## S3 method for class 'edma_gm'
global_test(object, ...)
## S3 method for class 'edma_gdm'
global_test(object, ...)
## S3 method for class 'edma_gdm'
landmarks(x, ...)
## S3 method for class 'edma_gdm'
dimensions(x, ...)
## S3 method for class 'edma_gdm'
plot_ord(x, ...)
## S3 method for class 'edma_gdm'
plot_clust(x, ...)
a1, a2, b1, b2 |
EDMA fit object to compare growths. |
x, object |
an EDMA GM or GDM objects. |
sort |
logical, if stacked distances are to be sorted, see Examples. |
level |
numeric, between 0 and 1, alpha level for confidence interval. |
what |
what part of the ford differences to return: |
... |
other arguments passed to |
Growth matrix (GM) is calculated as the ratio of form matrices (FM) from the numerator and denominator objects following Lele and Richtsmeier (1992, 1995): GM(A1,A2) = FM(A2)/FM(A1). Form matrices are formed as pairwise Euclidean distances between landmarks from EDMA fit objects using the estimated mean forms.
Growth difference matrix (GDM) is calculated as GDM(A1,A2,B1,B2) = GM(B1,B2) / GM(A1,A2).
Inference and visualization is similar to how it is done for FDMs.
edma_gm
compares two EDMA fit objects and calculates GM.
edma_gdm
compares 4 EDMA fit objects and calculates GDM.
The plot_ord
and plot_clust
produce plots based on dissimilarities among specimens
in the 2 or 4 objects (for GM and GDM, respectively).
Peter Solymos, Subhash R. Lele, Theodore M. Cole, Joan T. Richtsmeier
Lele, S. R., and Richtsmeier, J. T., 1992. On comparing biological shapes: detection of influential landmarks. American Journal of Physical Anthropology 87:49–65. <doi:10.1002/ajpa.1330870106>
Lele, S. R., and Richtsmeier, J. T., 1995. Euclidean distance matrix analysis: confidence intervals for form and growth differences. American Journal of Physical Anthropology 98:73–86. <doi:10.1002/ajpa.1330980107>
Nonparametric fit: edma_fit
Form difference: edma_fdm
Shape difference: edma_sdm
file_a1 <- system.file("extdata/growth/CZEM_wt_global.xyz",
package="EDMAinR")
file_a2 <- system.file("extdata/growth/CZP0_wt_global.xyz",
package="EDMAinR")
l <- c("amsph", "bas", "loci", "lpto", "lsqu",
"lsyn", "roci", "rpto", "rsqu", "rsyn")
a1 <- read_xyz(file_a1)[l,,]
a2 <- read_xyz(file_a2)[l,,]
a1
a2
fit_a1 <- edma_fit(a1, B=10)
fit_a2 <- edma_fit(a2, B=10)
## --- growth matrix ---
gm <- edma_gm(a1=fit_a1, a2=fit_a2, B=10)
gm
global_test(gm)
head(confint(gm))
head(get_gm(gm))
head(get_gm(gm, sort=TRUE, decreasing=TRUE))
head(get_gm(gm, sort=TRUE, decreasing=FALSE))
plot_ord(gm)
plot_clust(gm)
plot_test(gm)
plot_ci(gm)
plot_2d(gm)
if (interactive())
plot_3d(gm)
## --- growth difference matrix ---
file_b1 <- system.file("extdata/growth/CZEM_mut_global.xyz",
package="EDMAinR")
file_b2 <- system.file("extdata/growth/CZP0_mut_global.xyz",
package="EDMAinR")
b1 <- read_xyz(file_b1)[l,,]
b2 <- read_xyz(file_b2)[l,,]
b1
b2
fit_b1 <- edma_fit(b1, B=10)
fit_b2 <- edma_fit(b2, B=10)
gdm <- edma_gdm(a1=fit_a1, a2=fit_a2, b1=fit_b1, b2=fit_b2, B=10)
gdm
global_test(gdm)
head(confint(gdm))
head(get_gdm(gdm))
head(get_gdm(gdm, sort=TRUE, decreasing=TRUE))
head(get_gdm(gdm, sort=TRUE, decreasing=FALSE))
plot_ord(gdm)
plot_clust(gdm)
plot_test(gdm)
plot_ci(gdm)
plot_2d(gdm) # need real data
if (interactive())
plot_3d(gdm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.