# Read in custom census tabulation, only keep Toronto and Toronto CTs and derive dimension hierarchy
# Retrieved from: https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/SGQVAE
# Exported from IVT file in following order:
# Rows: Geography; Number of Bedrooms; Condominium Status; Tenure
# Cols: Household Size
# Geographic level for Toronto CTs: Census metropolitan areas (CMAs) and census tracts (CTs)
library(readr)
library(dplyr)
library(tidyr)
library(stringr)
library(janitor)
### Set up paths for data sets ------
cts_census_path <- here::here("data-raw", "aggregate_data", "census_custom_tab_2016_table2", "raw", "TorontoCT_geography_bedrooms_condominium_tenure_Table2.csv")
### Get Toronto census tracts -----
toronto_cts <- read_csv(cts_census_path, guess_max = 100000, col_types = "c")
# ### Tidy names
toronto_cts <- toronto_cts %>%
clean_names() %>%
rename(
number_of_bedrooms = number_of_bedr,
condominium_status = condominium_sta,
tenure = tenure_3,
total = total_household_size,
one_person = x1_person,
two_person = x2_persons,
three_person = x3_persons,
four_person = x4_persons,
five_or_more_person = x5_or_more_persons
)
# ### Save Toronto census tracts
saveRDS(toronto_cts, here::here("data-raw", "aggregate_data", "census_custom_tab_2016_table2", "extract", "custom_tab_toronto_table2.rds"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.