Description Usage Arguments Value Examples
View source: R/positive.golazo.R
The function simply running golazo() with L_ij=0 and U_ij=rho.
1 | positive.golazo(S, rho, tol = 1e-07, diagonal.pen = FALSE, verbose = TRUE)
|
S |
Positive semidefinite matrix. This will be typically the sample covariance matrix but it can be somethink different in the dual likelihood computation or when the data follow the non-paranormal distribution. |
rho |
the penalty on the positive entries of K (can be Inf). |
tol |
The convergence tolerance (default tol=1e-7). The algorithm termininnates when teh dual gap (guaranteed to be nonnegative) is less than tol. |
diagonal.pen |
if FALSE (default) the diagonal of K is not penalized. |
verbose |
if TRUE (default) the output will be printed. |
K the optimal value of the concentration matrix
Sig the optimal value of the covariance matrix
it the number of iterations
1 2 3 4 5 6 7 | data(ability.cov)
S <- ability.cov$cov
R <- stats::cov2cor(S)
d <- nrow(R)
res <- positive.golazo(R,rho=0.1)
Khat <- res$K
print(Khat)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.