knitr::opts_chunk$set( collapse = TRUE, echo = FALSE, message = FALSE, fig.width = 6, fig.height = 4.5, out.width = "650px", comment = "#>" )
plot_age_length(x@.MISC$RBfit@RBdata, stan_obj = x, bubble = bubble)
plot_length(x@.MISC$RBfit@RBdata)
plot_stocking_density(x@.MISC$RBfit@RBdata)
plot_Lstart(x@.MISC$RBfit@RBdata)
plot(x@.MISC$RBfit@RBdata@Age, x@.MISC$RBfit@RBdata@Age_adjust, xlab = "Integer Age", ylab = "Accumulated growing degree time (years)", typ = "o", pch = 16) abline(a = 0, b = 1, lty = 2)
Table 1. Posterior means, standard deviation (SD), and coefficients of variation (CV).
generate_summary_table(x)
plot_selectivity(x@.MISC$RBfit, x)
if(is.null(y)) { plot_pars(RBdata = x@.MISC$RBfit@RBdata, stan_obj = x, plot.title = "", plot_type = "MCMC") } else plot_pars(RBdata = x@.MISC$RBfit@RBdata, stan_obj = x, stan_prior = y, plot.title = "", plot_type = "MCMC_both")
rstan::stan_ac(x)
rstan::stan_trace(x)
Table 2. Diagnostic statistics n_eff (effective sample size) and Rhat (Gelman-Rubin statistic) for the parameters in the model.
as.data.frame(summary(x)[[1]][, 9:10])
Note: Additional diagnostics are available through the Shiny app in the shinystan
package: shinystan::launch_shinystan()
This report was generated on: r Sys.time()
r R.version.string
RBassess version r packageVersion('RBassess')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.