knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(caracas)
inline_code <- function(x) { x } if (!has_sympy()) { # SymPy not available, so the chunks shall not be evaluated knitr::opts_chunk$set(eval = FALSE) inline_code <- function(x) { deparse(substitute(x)) } }
A problem was posted by the Danish newspaper, Ingeniøren, and it goes like this:
You are in the middle of a dense forest located at $A$. You need to get to $C$ in the fastest way possible, and you can only change direction once. You can walk directly via $AB$ to the dedicated walking path $BC$ where you can walk fast, you can take the direct path through the forest ($AC$) where you have to walk slower, or cross through the forest to the dedicated walking path ($AD$ and then $DC$).
old_mar <- par("mar") par(mar = c(0, 0, 0, 0)) A <- 300 kat <- sqrt(1000^2 - A^2) pA <- c(0, A) pB <- c(0, 0) pC <- c(kat, 0) D <- 400 pD <- c(D, 0) pad <- 40 plot(0, type = 'n', axes = FALSE, ann = FALSE, xlim = c(-pad, 1000+pad), ylim = c(-pad, A+pad)) polygon(c(pA[1]-pad, pB[1]-pad, pC[1]+pad, pC[1]+pad), c(pA[2]+pad, pB[2]-pad, pC[2]-pad, pA[2]+pad), border = NA, col = "green") points(pA[1], pA[2], type = "p"); text(pA[1], pA[2], labels = "A", pos = 2) points(pB[1], pB[2], type = "p"); text(pB[1], pB[2], labels = "B", pos = 2) points(pC[1], pC[2], type = "p"); text(pC[1], pC[2], labels = "C", pos = 4) points(pD[1], pD[2], type = "p"); text(pD[1], pD[2], labels = "D", pos = 1) lines(c(pA[1], pB[1]), c(pA[2], pB[2]), type = "l", col = "black", lty = 2) lines(c(pA[1], pC[1]), c(pA[2], pC[2]), type = "l", col = "black", lty = 2) lines(c(pB[1], pC[1]), c(pB[2], pC[2]), type = "l", col = "black", lwd = 3) lines(c(pA[1], pD[1]), c(pA[2], pD[2]), type = "l", col = "black", lty = 2) legend(1000-200, A, legend = c("5 m/s", "2 m/s"), lty = c(1, 2), lwd = c(3, 1)) text(-pad/3, A/2, labels = "|AB| = 300 m", pos = 3, srt = 90) text(kat/2, A/1.7, labels = "|AC| = 1,000 m", pos = 3) par(mar = old_mar)
We parameterise with $k = |BD|$, the distance between $B$ and $D$. That is, how much to walk on fast walking path before crossing into the forest.
Formulating using caracas
:
AB <- as_sym('300') AB AC <- as_sym('1000') AC BC <- sqrt(AC^2 - AB^2) BC k <- symbol('k') # |BD| DC <- BC - k AD <- sqrt(AB^2 + k^2) AD
So for a distance of $|AD|$, you travel by 5 m/s, and then for a distance of
$r inline_code(tex(DC))
$ you travel by 2 m/s.
Thus it takes $r inline_code(tex(AD/2))
$ to travel $AD$ and $r inline_code(tex(DC/5))
$ to travel $DC$.
The question is: What is the fastest way to get from $A$ to $C$?
First, the total duration of the route is:
l <- AD/2 + DC/5 l
lfun <- as_expr(l) lfun ks <- seq(0, as_expr(AC), length.out = 100) ls <- eval(lfun, list(k = ks)) plot(ks, ls, type = "l", xlab = "k", ylab = "Time A to C")
It looks like a minimum around $k = 150$.
We find the analytical solution by first finding critical points:
dl <- der(l, k) dl crit_points <- solve_sys(dl, k) crit_points best_k <- crit_points[[1]]$k best_k
The type of the critical point is found by considering the Hessian:
eval(as_expr(der(dl, k)), list(k = as_expr(best_k)))
Thus the critical point is indeed a minimum as suggested by the plot.
The fastest route is thus obtained for
[
k = r inline_code(tex(best_k))
\approx r inline_code(round(as_expr(best_k), 2))
.
]
It has a length of (in meters)
DC_best <- BC - best_k AD_best <- sqrt(AB^2 + best_k^2) AD_best best_route <- AD_best + DC_best best_route as_expr(best_route)
[
r inline_code(tex(best_route))
\approx r inline_code(round(as_expr(best_route), 2))
]
and takes (in seconds)
best_l <- subs(l, "k", best_k) best_l as_expr(best_l)
[
r inline_code(tex(best_l))
\approx r inline_code(round(as_expr(best_l), 2))
]
The best route can be illustrated, too:
old_mar <- par("mar") par(mar = c(0, 0, 0, 0)) A <- 300 kat <- sqrt(1000^2 - A^2) pA <- c(0, A) pB <- c(0, 0) pC <- c(kat, 0) D <- as_expr(best_k) pD <- c(D, 0) pad <- 40 plot(0, type = 'n', axes = FALSE, ann = FALSE, xlim = c(-pad, 1000+pad), ylim = c(-pad, A+pad)) polygon(c(pA[1]-pad, pB[1]-pad, pC[1]+pad, pC[1]+pad), c(pA[2]+pad, pB[2]-pad, pC[2]-pad, pA[2]+pad), border = NA, col = "green") points(pA[1], pA[2], type = "p"); text(pA[1], pA[2], labels = "A", pos = 2) points(pB[1], pB[2], type = "p"); text(pB[1], pB[2], labels = "B", pos = 2) points(pC[1], pC[2], type = "p"); text(pC[1], pC[2], labels = "C", pos = 4) points(pD[1], pD[2], type = "p"); text(pD[1], pD[2], labels = "D", pos = 1) lines(c(pA[1], pB[1]), c(pA[2], pB[2]), type = "l", col = "black", lty = 2) lines(c(pA[1], pC[1]), c(pA[2], pC[2]), type = "l", col = "black", lty = 2) lines(c(pB[1], pC[1]), c(pB[2], pC[2]), type = "l", col = "black", lwd = 3) lines(c(pA[1], pD[1]), c(pA[2], pD[2]), type = "l", col = "black", lty = 2) lines(c(pA[1], pD[1]), c(pA[2], pD[2]), type = "l", col = "red", lwd = 2.5) lines(c(pD[1], pC[1]), c(pD[2], pC[2]), type = "l", col = "red", lwd = 2.5) legend(1000-200, A, legend = c("5 m/s", "2 m/s"), lty = c(1, 2), lwd = c(3, 1)) text(-pad/3, A/2, labels = "|AB| = 300 m", pos = 3, srt = 90) text(kat/2, A/1.7, labels = "|AC| = 1,000 m", pos = 3) par(mar = old_mar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.