| nlp_entity_ruler | R Documentation | 
Spark ML estimator that See https://nlp.johnsnowlabs.com/docs/en/annotators#entityruler
nlp_entity_ruler(
  x,
  input_cols,
  output_col,
  case_sensitive = NULL,
  enable_pattern_regex = NULL,
  patterns_resource_path = NULL,
  patterns_resource_read_as = NULL,
  patterns_resource_options = NULL,
  storage_path = NULL,
  storage_ref = NULL,
  use_storage = NULL,
  uid = random_string("entity_ruler_")
)
| x | A  | 
| input_cols | Input columns. String array. | 
| output_col | Output column. String. | 
| case_sensitive | Whether to ignore case in index lookups (Default depends on model) | 
| enable_pattern_regex | Enables regex pattern match (Default: false). | 
| patterns_resource_path | Resource in JSON or CSV format to map entities to patterns (Default: null). | 
| patterns_resource_read_as | TEXT or SPARK_DATASET | 
| patterns_resource_options | options passed to the reader. (Default: list("format" = "JSON")) | 
| storage_path | Path to the external resource. | 
| storage_ref | Unique identifier for storage (Default: this.uid) | 
| use_storage | Whether to use RocksDB storage to serialize patterns (Default: true). | 
| uid | A character string used to uniquely identify the ML estimator. | 
The object returned depends on the class of x.
spark_connection: When x is a spark_connection, the function returns an instance of a ml_estimator object. The object contains a pointer to
a Spark Estimator object and can be used to compose
Pipeline objects.
ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with
the NLP estimator appended to the pipeline.
tbl_spark: When x is a tbl_spark, an estimator is constructed then
immediately fit with the input tbl_spark, returning an NLP model.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.