knitr::opts_chunk$set(echo = T, results = T, include = T, warning = F, message = F)
Install infoelectoral and load the packages needed.
# install_packages("infoelectoral") library(infoelectoral) # Cargo el resto de librerÃas library(dplyr) library(tidyr)
Download some results. In this case we download the election for Congress of December 2015.
results <- municipios("congreso", "2015", "12") # Descargo los datos
Import the geometry shapes for the municipalities using mapSpain.
library(mapSpain) shp <- esp_get_munic_siane(year = "2016") %>% select(LAU_CODE) shp_ccaa <- mapSpain::esp_get_ccaa_siane()
Since most parties have different names throughout the country, you will need to recode them to group their results. You can use the column codigo_partido_nacional
included in the resulting data.frame
that indicates the grouping party code at the national level. After that you'll have to create the complete municipality code (LAU_CODE
) for the merge with the sf
object and transform the data from long to wide format.
First, let's group the parties by codigo_partido_nacional
and siglas
and sum the votes to see which party codes correspond to the main parties.
results %>% group_by(codigo_partido_nacional) %>% summarise( siglas_r = paste(unique(siglas)[1], collapse = ", "), votos = sum(votos) ) %>% arrange(-votos)
Then, we'll have to recode the party names and calculate the percentage of votes.
results <- results %>% mutate( siglas_r = case_when( codigo_partido_nacional == "903316" ~ "PP", codigo_partido_nacional == "903484" ~ "PSOE", codigo_partido_nacional == "901079" ~ "Cs", codigo_partido_nacional %in% c("903736", "905033", "905008", "905041") ~ "Podemos", codigo_partido_nacional == "904850" ~ "IU" ), # Construyo la columna que identifica al municipio (LAU_CODE) LAU_CODE = paste0(codigo_provincia, codigo_municipio), # Calculo el % sobre censo pct = round((votos / censo_ine) * 100, 2) ) %>% filter(!is.na(siglas_r)) %>% # Selecciono las columnas necesarias select(codigo_ccaa, LAU_CODE, siglas_r, censo_ine, votos_candidaturas, pct)
With the LAU_CODE
column merge the data with the geometries of the municipalities.
shp <- left_join(shp, results, by = "LAU_CODE")
At last, we may use ggplot2 to visualize the data. In this case we use purrr::map
to create a list of plots each of them with their own color gradient scale and patchwork
to show them together.
library(ggplot2) library(purrr) library(patchwork) colores <- c("#0cb2ff", "#E01021", "#612d62", "#E85B2D", "#E01021") names(colores) <- c("PP", "PSOE", "Podemos", "Cs", "IU") # Creo una lista de plots maps <- map(names(colores), function(p) { shp %>% filter(siglas_r == p) %>% ggplot() + geom_sf( aes(fill = pct, color = pct), linewidth = 0, show.legend = F ) + geom_sf( data = shp_ccaa, fill = NA, color = "black", linewidth = 0.1 ) + facet_wrap(~siglas_r) + scale_fill_gradient( low = "white", high = colores[p], na.value = "grey90", aesthetics = c("fill", "color") ) + theme_void() }) # Uso patchworks para mostrar los plots wrap_plots(maps, ncol = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.