This article shows the evolution of selected economic indicators of Spain, based on the information provided by Banco de España.
Last update: r format(Sys.Date(),"%d-%B-%Y")
.
knitr::opts_chunk$set( collapse = TRUE, tidy = "styler", comment = "#>", warning = FALSE, message = FALSE, dev = "ragg_png", dpi = 300, out.width = "100%" ) library(tidyBdE) library(ggplot2) library(dplyr) library(tidyr) col <- bde_tidy_palettes(1, "bde_rose_pal") date <- Sys.Date() ny <- as.numeric(format(date, format = "%Y")) - 6 nd <- as.Date(paste0(ny, "-12-31")) br <- seq(nd, Sys.Date(), "6 months")
dataset <- bde_ind_gdp_quarterly(series_label = "data") %>% drop_na() dataset$LastY <- dataset$data + lag(dataset$data, 1) + lag(dataset$data, 2) + lag(dataset$data, 3) dataset <- dataset %>% filter(Date >= nd) %>% mutate(data = LastY) %>% select(-LastY) l <- dataset[nrow(dataset), ] ggplot(dataset, aes(x = Date, y = data)) + geom_bar(fill = col, stat = "identity") + scale_y_continuous(labels = scales::label_number()) + labs( title = "GDP of Spain", subtitle = "million €", caption = "Source: BdE" ) + scale_x_date( date_labels = "%b-%Y", breaks = br ) + theme_tidybde()
dataset <- bde_ind_gdp_var(series_label = "data") %>% filter(Date >= nd) %>% drop_na() l <- dataset[nrow(dataset), ] ggplot(dataset, aes(x = Date, y = data)) + geom_line(color = col) + geom_text( data = l, size = 3, aes(label = paste(x = data, "%\n", format(Date, "%b-%Y"))) ) + labs( title = "GDP of Spain (year-on-year variation)", subtitle = "%", caption = "Source: BdE" ) + scale_x_date( date_labels = "%b-%Y", breaks = br ) + theme_tidybde()
pop <- bde_ind_population(series_label = "pop") pib <- bde_ind_gdp_quarterly(series_label = "data") pib$LastY <- pib$data + lag(pib$data, 1) + lag(pib$data, 2) + lag(pib$data, 3) pib <- inner_join(pib, pop, by = "Date") pib <- pib %>% mutate(data = 1000 * LastY / pop) dataset <- pib %>% select(Date, data) %>% filter(Date >= nd) %>% drop_na() l <- dataset[nrow(dataset), ] ggplot(dataset, aes(x = Date, y = data)) + geom_line(color = col) + geom_text( data = l, size = 3, aes(label = paste( x = prettyNum(data, big.mark = " "), "€\n", format(Date, "%b-%Y") )) ) + labs( title = "GDP per capita of Spain", subtitle = "€", caption = "Source: BdE" ) + scale_y_continuous(labels = scales::label_number()) + scale_x_date( date_labels = "%b-%Y", breaks = br ) + theme_tidybde()
dataset <- bde_ind_unemployment_rate(series_label = "data") %>% filter(Date >= nd) %>% drop_na() l <- dataset[nrow(dataset), ] ggplot(dataset, aes(x = Date, y = data)) + geom_line(color = col) + geom_text( data = l, size = 3, aes(label = paste(x = data, "%\n", format(Date, "%b-%Y"))) ) + labs( title = "Unemployment Rate", subtitle = "%", caption = "Source: BdE" ) + scale_x_date( date_labels = "%b-%Y", breaks = br ) + theme_tidybde()
dataset <- bde_ind_cpi_var(series_label = "data") %>% filter(Date >= nd) %>% drop_na() l <- dataset[nrow(dataset), ] ggplot(dataset, aes(x = Date, y = data)) + geom_line(color = col) + geom_text( data = l, size = 3, aes(label = paste(x = data, "%\n", format(Date, "%b-%Y"))) ) + labs( title = "Consumer Price Index", subtitle = "%", caption = "Source: BdE" ) + scale_x_date( date_labels = "%b-%Y", breaks = br ) + theme_tidybde()
dataset <- bde_ind_euribor_12m_monthly(series_label = "data") %>% filter(Date >= nd) %>% drop_na() l <- dataset[nrow(dataset), ] ggplot(dataset, aes(x = Date, y = data)) + geom_line(color = col) + geom_text( data = l, size = 3, aes(label = paste(x = data, "%\n", format(Date, "%b-%Y"))) ) + labs( title = "Euribor 12 months (monthly)", subtitle = "%", caption = "Source: BdE" ) + scale_x_date( date_labels = "%b-%Y", breaks = br ) + theme_tidybde()
dataset <- bde_ind_population(series_label = "data") %>% filter(Date >= nd) %>% drop_na() l <- dataset[nrow(dataset), ] ggplot(dataset, aes(x = Date, y = data)) + geom_line(color = col) + geom_text( data = l, size = 3, aes(label = paste( x = prettyNum(data, big.mark = " "), "\n", format(Date, "%b-%Y") )) ) + labs( title = "Population of Spain", subtitle = "thousands", caption = "Source: BdE" ) + scale_x_date( date_labels = "%b-%Y", breaks = br ) + scale_y_continuous(labels = scales::label_number()) + theme_tidybde()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.