leeg: The Log-Extended Exponential-Geometric (LEEG) Distribution

Description Usage Arguments Details Value Author(s) Examples

Description

Density, distribution function, quantile function, and random generation for the log-extended explonential-geometric (LEEG) distribution with median mu and dispersion parameter delta.

Usage

1
2
3
4
5
6
7
dleeg(x, mu, delta)

pleeg(q, mu, delta, lower.tail = TRUE)

qleeg(p, mu, delta, lower.tail = TRUE)

rleeg(n, mu, delta)

Arguments

x, q

vector of quantiles.

mu

vector of medians.

delta

vector of dispersion paramere.

lower.tail

logical; if TRUE (default), probabilities are P(X <= x), otherwise, P(X > x).

p

vector of probabilities.

n

number of random values to return.

Details

The LEEG distribution was proposed by Jodrá and Jiménez-Gameiro (2017). This set of functions represents the density function, the cumulative distribution function, quantile function and a random number generator for the LEEG distribution parameterized in terms of its median and a dispersion parameter.

Let X be a bounded random variable following a LEEG distribution with median mu and dispersion parameter delta. The density function of X is

Value

dleeg returns the probability function, pleeg gives the distribution function, qleeg gives the quantile function, and rleeg generates random observations.

Author(s)

Diego R. Canterle

Rodrigo M. R. Medeiros <rodrigo.matheus@live.com>

Examples

1
2
3
4
5
6
7
8
9
### Density ###

curve(dleeg(x, 0.15, 1), col = 2)
curve(dleeg(x, 0.12, 1.5), col = 3, add = TRUE)
curve(dleeg(x, 0.45, 4), col = 4, add = TRUE)
curve(dleeg(x, 0.5, 1), col = 1, add = TRUE)
curve(dleeg(x, 0.85, 15), col = 5, add = TRUE)
curve(dleeg(x, 0.9, 15), col = 6, add = TRUE)
curve(dleeg(x, 0.86, 1.25), col = 7, add = TRUE)

rdmatheus/leegarma documentation built on Sept. 19, 2020, 1:31 a.m.