Description Usage Arguments Details Value Author(s) Examples
Density, distribution function,
quantile function, and random generation for the log-extended
explonential-geometric (LEEG) distribution with median mu
and
dispersion parameter delta
.
1 2 3 4 5 6 7 |
x, q |
vector of quantiles. |
mu |
vector of medians. |
delta |
vector of dispersion paramere. |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of random values to return. |
The LEEG distribution was proposed by Jodrá and Jiménez-Gameiro (2017). This set of functions represents the density function, the cumulative distribution function, quantile function and a random number generator for the LEEG distribution parameterized in terms of its median and a dispersion parameter.
Let X be a bounded random variable following a LEEG distribution
with median mu
and dispersion parameter delta
. The
density function of X is
dleeg
returns the probability function, pleeg
gives the distribution function, qleeg
gives the quantile function,
and rleeg
generates random observations.
Diego R. Canterle
Rodrigo M. R. Medeiros <rodrigo.matheus@live.com>
1 2 3 4 5 6 7 8 9 | ### Density ###
curve(dleeg(x, 0.15, 1), col = 2)
curve(dleeg(x, 0.12, 1.5), col = 3, add = TRUE)
curve(dleeg(x, 0.45, 4), col = 4, add = TRUE)
curve(dleeg(x, 0.5, 1), col = 1, add = TRUE)
curve(dleeg(x, 0.85, 15), col = 5, add = TRUE)
curve(dleeg(x, 0.9, 15), col = 6, add = TRUE)
curve(dleeg(x, 0.86, 1.25), col = 7, add = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.