| predict.list | R Documentation | 
Adds estimated values and associated confidence and/or prediction intervals to data based on trending_model fit.
## S3 method for class 'list'
predict(
  object,
  data,
  name = "estimate",
  alpha = 0.05,
  add_ci = TRUE,
  ci_names = c("lower_ci", "upper_ci"),
  add_pi = TRUE,
  pi_names = c("lower_pi", "upper_pi"),
  simulate_pi = FALSE,
  sims = 2000,
  uncertain = TRUE,
  ...
)
object | 
 A list of   | 
data | 
 A   | 
name | 
 Character vector of length one giving the name to use for the calculated estimate.  | 
alpha | 
 The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived.  | 
add_ci | 
 Should a confidence interval be added to the output. Default TRUE.  | 
ci_names | 
 Names to use for the resulting confidence intervals.  | 
add_pi | 
 Should a prediction interval be added to the output. Default TRUE.  | 
pi_names | 
 Names to use for the resulting prediction intervals.  | 
simulate_pi | 
 Should the prediction intervals for glm models be
simulated. If TRUE, default,   | 
sims | 
 The number of simulations to run when simulating prediction intervals for a glm model.  | 
uncertain | 
 Only used for glm models and when   | 
... | 
 Not currently used.  | 
A trending_predict_tbl object which is a
tibble subclass with one row per model and columns:
 result: the input data frame with additional estimates and, optionally,
confidence and or prediction intervals. NULL if the associated
predict method fails.
warnings: any warnings generated during prediction.
errors: any errors generated during prediction.
Tim Taylor
predict.trending_model(), predict.trending_fit(),
predict.trending_fit_tbl(),
x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
negbin_model <- glm_nb_model(y ~ x)
predict(list(poisson_model, negbin_model), dat)
predict(list(pm = poisson_model, nm = negbin_model), dat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.