Informations Générales

Avertissements:

Les données présentées dans ce document ont été compilées le r lubridate::day(Sys.Date()) r lubridate::month(Sys.Date(), label = TRUE, abbr = FALSE) r lubridate::year(Sys.Date()) à l'aide du package LUPA sous le logiciel r R.version$version.string.

Les données utilisées ont été collectées par le r params$Parc sur la période du r lubridate::day(as.character(params$d_sel_min)) r lubridate::month(as.character(params$d_sel_min), label = TRUE, abbr = FALSE) r lubridate::year(as.character(params$d_sel_min)) au r lubridate::day(as.character(params$d_sel_max)) r lubridate::month(as.character(params$d_sel_max), label = TRUE, abbr = FALSE) r lubridate::year(as.character(params$d_sel_max)).

Seules les données incluses à l'emprise géographique ont été prises en compte.

Les données sont sytématiquement comparées avec la même période de l'année précédente

Attaques

Chiffres clés et évolution

ggplot(
    data = params$constetref, 
    aes(
      x = as.character(annee), 
      y = attaque, 
      fill = type,
      group = type)
  ) + 
    geom_bar(position = "stack", stat = "identity") +
    xlab("Année") +
    ylab("Nombre d'attaques") +
    scale_fill_manual(
      name = "Localisation des attaques",
      values = c("red","forestgreen","grey"),
      labels = c("Zone coeur", "Aire d'adhésion", "Département(s)"))+
    theme(
      panel.background = element_blank(),
      panel.grid.major = element_line(linetype = "dashed", colour = "black"),
      legend.position = "top",
      legend.direction = "horizontal",
      legend.text = element_text(size = 15),
      legend.title = element_text(size = 18),
      axis.text = element_text(size = 15),
      axis.title = element_text(size = 18),
      axis.text.x = element_text(angle = 45, hjust = 1)
    )
tmp <- aggregate(data = params$constetref, attaque ~ annee + type,sum)
tmp2 <- dplyr::filter(tmp, type == "1_ZC")
test <- 1-(tmp2[nrow(tmp2)-1,3]/tmp2[nrow(tmp2),3])

r paste(tmp2[nrow(tmp2),3]," attaques en zone coeur en ",tmp2[nrow(tmp2),1],sep = "") (soit une r ifelse(test = test>0,yes = paste("augmentation de ",abs(round(test*100,2)),"%", sep = ""),no = paste("diminution de ",abs(round(test*100,2)),"%", sep = "")))

tmp <- aggregate(data = params$constetref, attaque ~ annee + type,sum)
tmp2 <- dplyr::filter(tmp, type == "2_AA")
test <- 1-(tmp2[nrow(tmp2)-1,3]/tmp2[nrow(tmp2),3])

r paste(tmp2[nrow(tmp2),3]," attaques en aire d'adhésion en ",tmp2[nrow(tmp2),1],sep = "") (soit une r ifelse(test = test>0,yes = paste("augmentation de ",abs(round(test*100,2)),"%", sep = ""),no = paste("diminution de ",abs(round(test*100,2)),"%", sep = "")))

(par rapport à la même période l'année précédente)

Répartition communale - chiffres

 data <- params$comp_intercom

  tmp <- aggregate(data = data, attaque ~ commune + type + annee, sum)

  ggplot(
    data = tmp,
    aes(x = commune, y = attaque, fill = type )) +
    geom_col(position = "stack") +
    xlab("Communes") +
    ylab("Nombre d'attaques") +
    scale_fill_manual(
      name = "Localisation des attaques",
      values = c("red","forestgreen","grey"),
      labels = c("Zone coeur", "Aire d'adhésion", "Département(s)"))+
    facet_grid(annee ~ .) +
    theme(
      panel.background = element_blank(),
      panel.grid.major = element_line(linetype = "dashed", colour = "black"),
      legend.position = "top",
      legend.direction = "horizontal",
      legend.text = element_text(size = 15),
      legend.title = element_text(size = 18),
      axis.text = element_text(size = 15),
      axis.title = element_text(size = 18),
      axis.text.x = element_text(angle = 75, hjust = 1, size = 13),
      strip.text.y = element_text(size = 15)
    )

Répartition communale - carte

   Parc_area <- params$Parc_area

    tmp <- aggregate(
      data =  dplyr::filter(
        params$constat,
        type != "3_DPT"),
      attaque ~ insee, 
      sum)

    tmp2 <- dplyr::left_join(tmp, area_com, by =  "insee")

    tmp2 <- sf::st_as_sf(tmp2)

    ggplot() + 
      geom_sf(
        data = tmp2,
        aes(fill = attaque)
      ) +
      geom_sf(
        data = Parc_area[2,],
        col = data_parc$col[data_parc$nom == params$Parc],
        fill = NA,
        size = 0.8) +
      geom_sf(
        data = Parc_area[1,],
        col = data_parc$col[data_parc$nom == params$Parc],
        fill = NA,
        size = 0.6,
        linetype = "dashed") +
      scale_fill_gradient(name = "Nombre d'attaques\npar communes" ,low = "lightgrey", high = "red") +
      theme(
        panel.background = element_blank(),
        panel.grid.major = element_line(linetype = "dashed", colour = "black"),
        legend.position = "right",
        legend.direction = "vertical",
        legend.text = element_text(size = 13),
        legend.title = element_text(size = 16),
        axis.text = element_text(size = 13),
        axis.title = element_text(size = 16),
        axis.text.x = element_text(angle = 60, hjust = 1)
      )

Nombre de victimes

Chiffres clés et évolution

ggplot(
    data = params$constetref, 
    aes(
      x = as.character(annee), 
      y = nb_vict, 
      fill = type,
      group = type)
  ) + 
    geom_bar(position = "stack", stat = "identity") +
    xlab("Année") +
    ylab("Nombre d'nb_victs") +
    scale_fill_manual(
      name = "Localisation des victimes",
      values = c("red","forestgreen","grey"),
      labels = c("Zone coeur", "Aire d'adhésion", "Département(s)"))+
    theme(
      panel.background = element_blank(),
      panel.grid.major = element_line(linetype = "dashed", colour = "black"),
      legend.position = "top",
      legend.direction = "horizontal",
      legend.text = element_text(size = 15),
      legend.title = element_text(size = 18),
      axis.text = element_text(size = 15),
      axis.title = element_text(size = 18),
      axis.text.x = element_text(angle = 45, hjust = 1)
    )
tmp <- aggregate(data = params$constetref, nb_vict ~ annee + type,sum)
tmp2 <- dplyr::filter(tmp, type == "1_ZC")
test <- 1-(tmp2[nrow(tmp2)-1,3]/tmp2[nrow(tmp2),3])

r paste(tmp2[nrow(tmp2),3]," victimes en zone coeur en ",tmp2[nrow(tmp2),1],sep = "") (soit une r ifelse(test = test>0,yes = paste("augmentation de ",abs(round(test*100,2)),"%", sep = ""),no = paste("diminution de ",abs(round(test*100,2)),"%", sep = "")))

tmp <- aggregate(data = params$constetref, nb_vict ~ annee + type,sum)
tmp2 <- dplyr::filter(tmp, type == "2_AA")
test <- 1-(tmp2[nrow(tmp2)-1,3]/tmp2[nrow(tmp2),3])

r paste(tmp2[nrow(tmp2),3]," victimes en aire d'adhésion en ",tmp2[nrow(tmp2),1],sep = "") (soit une r ifelse(test = test>0,yes = paste("augmentation de ",abs(round(test*100,2)),"%", sep = ""),no = paste("diminution de ",abs(round(test*100,2)),"%", sep = "")))

(par rapport à la même période l'année précédente)

Répartition communale - chiffres

 data <- params$comp_intercom

  tmp <- aggregate(data = data, nb_vict ~ commune + type + annee, sum)

  ggplot(
    data = tmp,
    aes(x = commune, y = nb_vict, fill = type )) +
    geom_col(position = "stack") +
    xlab("Communes") +
    ylab("Nombre de victimes") +
    scale_fill_manual(
      name = "Localisation des victimes",
      values = c("red","forestgreen","grey"),
      labels = c("Zone coeur", "Aire d'adhésion", "Département(s)"))+
    facet_grid(annee ~ .) +
    theme(
      panel.background = element_blank(),
      panel.grid.major = element_line(linetype = "dashed", colour = "black"),
      legend.position = "top",
      legend.direction = "horizontal",
      legend.text = element_text(size = 15),
      legend.title = element_text(size = 18),
      axis.text = element_text(size = 15),
      axis.title = element_text(size = 18),
      axis.text.x = element_text(angle = 75, hjust = 1, size = 13),
      strip.text.y = element_text(size = 15)
    )

Répartition communale - carte

   Parc_area <- params$Parc_area

    tmp <- aggregate(
      data =  dplyr::filter(
        params$constat,
        type != "3_DPT"),
      nb_vict ~ insee, 
      sum)

    tmp2 <- dplyr::left_join(tmp, area_com, by =  "insee")

    tmp2 <- sf::st_as_sf(tmp2)

    ggplot() + 
      geom_sf(
        data = tmp2,
        aes(fill = nb_vict)
      ) +
      geom_sf(
        data = Parc_area[2,],
        col = data_parc$col[data_parc$nom == params$Parc],
        fill = NA,
        size = 0.8) +
      geom_sf(
        data = Parc_area[1,],
        col = data_parc$col[data_parc$nom == params$Parc],
        fill = NA,
        size = 0.6,
        linetype = "dashed") +
      scale_fill_gradient(name = "Nombre de victimes\npar communes" ,low = "lightgrey", high = "red") +
      theme(
        panel.background = element_blank(),
        panel.grid.major = element_line(linetype = "dashed", colour = "black"),
        legend.position = "right",
        legend.direction = "vertical",
        legend.text = element_text(size = 13),
        legend.title = element_text(size = 16),
        axis.text = element_text(size = 13),
        axis.title = element_text(size = 16),
        axis.text.x = element_text(angle = 60, hjust = 1)
      )


remymoine/Lupa documentation built on Aug. 5, 2020, 12:07 a.m.