resampling: Random sampling to do KNN-Louvain/leiden clustering

View source: R/resampling.R

resamplingR Documentation

Random sampling to do KNN-Louvain/leiden clustering

Description

This function is used to randomly sample each cluster multiple times to select the most powerful KNN graph structure.

Usage

resampling(
  dat = dat,
  outlier_kmeans = NULL,
  knn_range = c(3:70),
  cluster_method = "louvain",
  resolution = 1,
  iter = 30,
  is_weight = TRUE,
  python_path = "/usr/bin/python3",
  seed = 723
)

Arguments

dat

expression matrix with cell * feature

outlier_kmeans

the result from pre_partitioning function

knn_range

the range of the number of neighbors in the KNN graph structure

cluster_method

louvain or leiden in resampling

resolution

clustering parameters settings in resampling

iter

the number of iterations in resampling

is_weight

Whether to use distance weights when constructing the KNN graph

python_path

which python

seed

random seed

Details

The currently available indices are:

  • Ball_Hall

  • Banfeld_Raftery

  • C_index

  • Calinski_Harabasz

  • Davies_Bouldin

  • Det_Ratio

  • Dunn

  • Gamma

  • G_plus

  • Ksq_DetW

  • Log_Det_Ratio

  • Log_SS_Ratio

  • McClain_Rao

  • PBM

  • Point_Biserial

  • Ray_Turi

  • Ratkowsky_Lance

  • Scott_Symons

  • SD_Scat

  • SD_Dis

  • S_Dbw

  • Silhouette

  • Tau

  • Trace_W

  • Trace_WiB

  • Wemmert_Gancarski

  • Xie_Beni

  • GDI11

  • GDI12

  • GDI13

  • GDI21

  • GDI22

  • GDI23

  • GDI31

  • GDI32

  • GDI33

  • GDI41

  • GDI42

  • GDI43

  • GDI51

  • GDI52

  • GDI53


renjun0324/KKLClustering documentation built on Oct. 8, 2024, 7:39 p.m.