resampling | R Documentation |
This function is used to randomly sample each cluster multiple times to select the most powerful KNN graph structure.
resampling(
dat = dat,
outlier_kmeans = NULL,
knn_range = c(3:70),
cluster_method = "louvain",
resolution = 1,
iter = 30,
is_weight = TRUE,
python_path = "/usr/bin/python3",
seed = 723
)
dat |
expression matrix with cell * feature |
outlier_kmeans |
the result from pre_partitioning function |
knn_range |
the range of the number of neighbors in the KNN graph structure |
cluster_method |
louvain or leiden in resampling |
resolution |
clustering parameters settings in resampling |
iter |
the number of iterations in resampling |
is_weight |
Whether to use distance weights when constructing the KNN graph |
python_path |
which python |
seed |
random seed |
The currently available indices are:
Ball_Hall
Banfeld_Raftery
C_index
Calinski_Harabasz
Davies_Bouldin
Det_Ratio
Dunn
Gamma
G_plus
Ksq_DetW
Log_Det_Ratio
Log_SS_Ratio
McClain_Rao
PBM
Point_Biserial
Ray_Turi
Ratkowsky_Lance
Scott_Symons
SD_Scat
SD_Dis
S_Dbw
Silhouette
Tau
Trace_W
Trace_WiB
Wemmert_Gancarski
Xie_Beni
GDI11
GDI12
GDI13
GDI21
GDI22
GDI23
GDI31
GDI32
GDI33
GDI41
GDI42
GDI43
GDI51
GDI52
GDI53
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.