#' The pipeR package
#'
#' pipeR implements various function chaining methods: \code{\%>>\%} operator,
#' \code{Pipe} object, and \code{pipeline} function. Each represents a distinct
#' pipeline model yet shares a common set of features designed to build
#' easy-to-read/write/maintain pipelines.
#' To learn more, please visit \href{http://renkun.me/pipeR-tutorial}{pipeR Tutorial}.
#' @name pipeR-package
#' @docType package
#' @details
#' pipeR package defines a set of syntax tailored for unified, intuitive piping
#' experience. The package is designed to help organize code as a streamline that
#' is consistent with logic and intuition.
#'
#' The following example shows how traditional code can be written in different
#' function chaining styles.
#' @examples
#' # Traditional code:
#' plot(density(sample(mtcars$mpg, size = 10000, replace = TRUE),
#' kernel = "gaussian"), col = "red", main="density of mpg (bootstrap)")
#'
#' # Operator-based pipeline using %>>%:
#' mtcars$mpg %>>%
#' sample(size = 10000, replace = TRUE) %>>%
#' density(kernel = "gaussian") %>>%
#' plot(col = "red", main = "density of mpg (bootstrap)")
#'
#' # Object-based pipeline using Pipe():
#' Pipe(mtcars$mpg)$
#' sample(size = 10000, replace = TRUE)$
#' density(kernel = "gaussian")$
#' plot(col = "red", main = "density of mpg (bootstrap)")
#'
#' # Argument-based pipeline using pipeline():
#' pipeline(mtcars$mpg,
#' sample(size = 10000, replace = TRUE),
#' density(kernel = "gaussian"),
#' plot(col = "red", main = "density of mpg (bootstrap)"))
#'
#' # Expression-based pipeline using pipeline():
#' pipeline({
#' mtcars$mpg
#' sample(size = 10000, replace = TRUE)
#' density(kernel = "gaussian")
#' plot(col = "red", main = "density of mpg (bootstrap)")
#' })
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.