# obtn_covid_data
#
# county_populations <- obtn_total_population %>%
# filter(year == 2022)
#
# obtn_covid_data %>%
# filter(measure == "cases_last_7_days") %>%
# filter(geography != "Unallocated, OR") %>%
# left_join(county_populations) %>%
# mutate(cases_per_100k = value / (population / 100000)) %>%
# ggplot(aes(x = date,
# y = cases_per_100k)) +
# geom_area(fill = tfff_dark_green) +
# facet_wrap(~geography) +
# theme_minimal()
#
# obtn_covid_data %>%
# filter(measure == "cases_last_7_days") %>%
# filter(geography != "Unallocated, OR") %>%
# left_join(county_populations) %>%
# mutate(cases_per_100k = value / (population / 100000)) %>%
# mutate(week = week(date)) %>%
# mutate(geography = fct_rev(geography)) %>%
# ggplot(aes(x = week,
# y = geography,
# fill = cases_per_100k)) +
# geom_tile() +
# theme_minimal() +
# scale_fill_gradient(low = tfff_light_green,
# high = tfff_dark_green)
# scale_fill_viridis_c()
#
# # JHU data
#
# obtn_covid_cases %>%
# left_join(county_populations) %>%
# filter(geography != "Out of OR") %>%
# filter(geography != "Unassigned") %>%
# mutate(cases_per_100k = cases / (population / 100000)) %>%
# ggplot(aes(x = date,
# y = cases_per_100k)) +
# geom_area(fill = tfff_dark_green) +
# facet_wrap(~geography) +
# theme_minimal()
#
#
# obtn_covid_cases %>%
# mutate(
# pd_cases = lag(cases) # Previous Day Cases
# ) %>%
# replace_na(list(pd_cases = 0)) %>%
# mutate(
# daily_cases = case_when(cases > pd_cases ~ cases - pd_cases,
# TRUE ~ 0)
# ) %>%
# filter(date > as.Date("2021-01-01")) %>%
# mutate(roll_cases = zoo::rollmean(daily_cases, k = 7, fill = NA)) %>%
# left_join(county_populations) %>%
# filter(geography != "Out of OR") %>%
# filter(geography != "Unassigned") %>%
# mutate(cases_per_100k = daily_cases / (population / 100000)) %>%
# ggplot(aes(x = date,
# y = cases_per_100k)) +
# geom_area(fill = tfff_dark_green) +
# scale_x_date(
# date_breaks = "3 months",
# label = label_date_short(),
# expand = expansion(mult = c(0.01, 0))
# ) +
# facet_wrap(~geography) +
# theme_minimal() +
# labs(x = NULL,
# y = NULL) +
# theme(panel.grid.minor.x = element_blank(),
# panel.grid.major.x = element_blank(),
# panel.grid.minor.y = element_blank())
#
# obtn_covid_cases %>%
# mutate(
# pd_cases = lag(cases) # Previous Day Cases
# ) %>%
# replace_na(list(pd_cases = 0)) %>%
# mutate(
# daily_cases = case_when(cases > pd_cases ~ cases - pd_cases,
# TRUE ~ 0)
# ) %>%
# filter(date > as.Date("2021-01-01")) %>%
# mutate(roll_cases = zoo::rollmean(daily_cases, k = 7, fill = NA)) %>%
# left_join(county_populations) %>%
# filter(geography != "Out of OR") %>%
# filter(geography != "Unassigned") %>%
# mutate(cases_per_100k = daily_cases / (population / 100000)) %>%
# arrange(desc(cases_per_100k)) %>%
# mutate(geography = fct_rev(geography)) %>%
# ggplot(aes(x = date,
# y = geography,
# fill = cases_per_100k)) +
# geom_tile() +
# theme_minimal() +
# scale_x_date(
# date_breaks = "1 month",
# label = label_date_short(),
# expand = expansion(mult = c(0.01, 0))
# ) +
# scale_fill_gradient(low = tfff_light_green,
# high = tfff_dark_green)
# scale_fill_viridis_c()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.