# # Load libraries
# library(gt)
# library(obtn)
# library(tidyverse)
# library(here)
# library(ragg)
# library(tinter)
# library(glue)
# library(magick)
#
#
#
# create_indicator_tables <- function(measure_input, year_input = 2020, source_note = "") {
#
# # Table colours
# table_palette <- c(
# tinter("#b5cb8d", adjust = 0.8, steps = 1),
# tinter("#0c5c4c", adjust = 0.8, steps = 1),
# "#0c5c4c"
# )
#
# no_percent <- c(
# "Total Population",
# "Life Expectancy - Overall",
# "Land Area",
# "Foster Care",
# "Index Crime",
# "Letter Sounds",
# "Job Growth",
# "Childcare Availability",
# "Mobile Homes",
# "Vehicle Miles Traveled"
# )
#
# percent_formats <- c(
# "Rural Population",
# "Public Lands",
# "Developed or Cultivated Land",
# "Food Insecurity",
# "Child Poverty",
# "Voter Participation",
# "3rd Grade ELA",
# "9th Grade on Track",
# "Graduation Rate",
# "4yr Degree or Greater",
# "Unemployment Rate",
# "Low Weight Births",
# "Vaccination Rate 2yr olds",
# "Good Physical Health",
# "Good Mental Health",
# "Tobacco Use",
# "Broadband Access",
# "Transit Service"
# )
#
# dollar_formats <- c(
# "Median Income",
# "Property Tax per Person",
# "Rent Costs"
# )
#
# # Manipulate data
# indicator_data <-
# obtn_data_by_measure %>%
# filter(measure == measure_input) %>%
# filter(year == year_input) %>%
# select(County = geography, Amount = value) %>%
# arrange(desc(Amount), County) %>%
# mutate(
# Rank = dense_rank(-Amount),
# Rank = ifelse(County=="Oregon", "", Rank)
# ) %>%
# relocate(Rank, everything())
#
# if (measure_input %in% percent_formats) {
#
# indicator_gt <-
# gt(indicator_data) %>%
# fmt_percent(
# columns = "Amount",
# decimals = 1,
# scale_values = FALSE
# )
#
# } else if (measure_input %in% dollar_formats) {
#
# indicator_gt <-
# gt(indicator_data) %>%
# fmt_currency(
# columns = "Amount",
# decimals = 0
# )
#
# } else {
#
# indicator_gt <-
# gt(indicator_data) %>%
# fmt_number(
# columns = "Amount",
# decimals = 0
# )
# }
#
# # create table using {gt}
# indicator_gt <-
# indicator_gt %>%
# # Align Rank column to the right
# cols_align(
# align = "right",
# columns = vars(Rank)
# ) %>%
# # All columns with font ProximaNova
# tab_style(
# style = list(
# cell_text(font = "ProximaNova-Regular", size = px(12))
# ),
# locations = cells_body(columns = everything())
# ) %>%
# # Every other row with light green
# tab_style(
# style = list(
# cell_fill(color = tinter(table_palette[1], adjust = 0.2, steps = 1)),
# cell_text(font = "ProximaNova-Regular")
# ),
# locations = cells_body(rows = seq(1, length(Amount), by = 2))
# ) %>%
# # Oregon rows with dark green, bold, and italic
# tab_style(
# style = list(
# cell_fill(color = table_palette[2]),
# cell_text(style = "italic", weight = "bold", font = "ProximaNova-Regular")
# ),
# locations = cells_body(rows = County %in% c("Oregon", "Urban Oregon", "Rural Oregon"))
# ) %>%
# # Column headers: dark green, white bold font
# tab_style(
# style = list(
# cell_fill(color = table_palette[3]),
# cell_text(color = "white", weight = "bold", font = "ProximaNova-Regular", size = px(12))
# ),
# locations = cells_column_labels(columns = everything())
# ) %>%
# # Remove grey cell borders
# tab_style(
# style = list(cell_borders(weight = NULL)),
# locations = list(cells_body(columns = gt::everything()))
# ) %>%
# # Add source note footer
# tab_source_note(
# source_note = md(glue("*{source_note}*"))
# ) %>%
# tab_options(
# table.width = px(172.8), # 172.8 px = approx 1.8 inches
# data_row.padding = px(5.3376/2),
#
# #Remove border between column headers and title
# column_labels.border.top.width = px(1),
# column_labels.border.bottom.width = px(1),
# column_labels.border.top.color = "transparent",
# column_labels.border.bottom.color = table_palette[3],
# table_body.border.top.style = "none",
# table_body.border.bottom.style = "none",
#
# #Remove border around table
# table.border.top.color = "transparent",
# table.border.bottom.color = "transparent",
# source_notes.border.bottom.color = "transparent",
# source_notes.font.size = px(12)
# ) %>%
# cols_width(
# vars(Rank) ~ px(37.152),
# vars(County) ~ px(84.096),
# vars(Amount)~ px(51.264)
# )
#
# file_name <- glue("indicator_table_{str_replace(measure_input, ' ', '_')}_{year_input}.png")
#
# # save table as PDF
# gtsave(indicator_gt, here("inst", "plots", "tests", file_name), zoom = 20)
#
# return(indicator_gt)
#
# }
#
# create_indicator_tables(measure_input = "Food Insecurity", year_input = 2020, source_note = "Source: Feeding America, Map the Meal Gap, 2017, updated annually. Released 2019.")
#
# #Missing:
# #net migration
# #Household in financial hardship
# #Labour force participation rate
# #Vehicle Miles Traveled(total/per capita)
#
# #tab_1 <-
# exibble %>%
# gt() %>%
# tab_options(
# table.width = pct(20)
# ) %>%
# gtsave("test.png")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.