knitr::opts_chunk$set(echo = FALSE)
getwd()
sample = runif(10,0,5) sample sum(sample) y = (5+0)/2 sigsq = ((5-0)^2) / 12 ybar = mean(sample) ssq = sd(sample) ^ 2 sprintf("Distribution Mean: %.4f Distribution Variance: %.4f", y, sigsq) sprintf("Sample Mean: %.4f Sample Variance: %.4f", ybar, ssq)
Conclusion: The sample mean and variance are not equal to the population or distribution mean and variance but are close.
$\begin{equation}E(T)=nE(Y_{i})=n\mu=10\cdot 2.5=25.0\end{equation}$ $\begin{equation}V(T)=nV(Y_{i})=10\cdot 2.0833 = 20.833\end{equation}$
$\begin{equation}E(\bar{Y})=E(Y)=\mu=2.5\end{equation}$ $\begin{equation}V(\bar{Y})=\frac{\sigma ^{2}}{n}=\frac{2.0833}{10}=0.20833\mu\end{equation}$
myclt=function(n,iter){ y=runif(n*iter,0,5) # A data=matrix(y,nr=n,nc=iter,byrow=TRUE) #B sm=apply(data,2,sum) #C hist(sm) sm } w=myclt(n=10,iter=10000) #D mean(w) var(w) myclt_modified=function(n,iter){ y=runif(n*iter,0,5) data=matrix(y,nr=n,nc=iter,byrow=TRUE) sm=apply(data,2,mean) hist(sm) sm } w=myclt_modified(n=10,iter=10000) mean(w)
A) Creates iter samples with n elements within the sample from a uniform distribution with a lower limit of 0 and upper limit of 6. These values are stored in one list of size n*iter.
B) Groups the samples into a matrix where each sample is a column.
C) Apply the sum function to the columns in the matrix. This is going to return the sum of each sample. It will be size = iter.
D) Calls the function for a sample population of 10,000 samples of size 10. It stores the output in w.
mycltu=function(n,iter,a=0,b=10){ ## r-random sample from the uniform y=runif(n*iter,a,b) ## Place these numbers into a matrix ## The columns will correspond to the iteration and the rows will equal the sample size n data=matrix(y,nr=n,nc=iter,byrow=TRUE) ## apply the function mean to the columns (2) of the matrix ## these are placed in a vector w w=apply(data,2,mean) ## We will make a histogram of the values in w ## How high should we make y axis? ## All the values used to make a histogram are placed in param (nothing is plotted yet) param=hist(w,plot=FALSE) ## Since the histogram will be a density plot we will find the max density ymax=max(param$density) ## To be on the safe side we will add 10% more to this ymax=1.1*ymax ## Now we can make the histogram hist(w,freq=FALSE, ylim=c(0,ymax), main=paste("Histogram of sample mean", "\n", "sample size= ",n,sep=""),xlab="Sample mean") ## add a density curve made from the sample distribution lines(density(w),col="Blue",lwd=3) # add a density plot ## Add a theoretical normal curve curve(dnorm(x,mean=(a+b)/2,sd=(b-a)/(sqrt(12*n))),add=TRUE,col="Red",lty=2,lwd=3) # add a theoretical curve ## Add the density from which the samples were taken curve(dunif(x,a,b),add=TRUE,lwd=4) }
Apply function uses the parameter 2 to indicate we want to apply the function to the columns.
When n=20 and iter=100,0000. The size of w is 100,000.
w=mycltu(n=1,iter=10000) w=mycltu(n=2,iter=10000) w=mycltu(n=3,iter=10000) w=mycltu(n=5,iter=10000) w=mycltu(n=10,iter=10000) w=mycltu(n=30,iter=10000)
Conclusion: As sample size increases, or sampling distribution gets closer to normal.
mycltb=function(n,iter,p=0.5,...){ ## r-random sample from the Binomial y=rbinom(n*iter,size=n,prob=p) ## Place these numbers into a matrix ## The columns will correspond to the iteration and the rows will equal the sample size n data=matrix(y,nr=n,nc=iter,byrow=TRUE) ## apply the function mean to the columns (2) of the matrix ## these are placed in a vector w w=apply(data,2,mean) ## We will make a histogram of the values in w ## How high should we make y axis? ## All the values used to make a histogram are placed in param (nothing is plotted yet) param=hist(w,plot=FALSE) ## Since the histogram will be a density plot we will find the max density ymax=max(param$density) ## To be on the safe side we will add 10% more to this ymax=1.1*ymax ## Now we can make the histogram ## freq=FALSE means take a density hist(w,freq=FALSE, ylim=c(0,ymax), main=paste("Histogram of sample mean","\n", "sample size= ",n,sep=""), xlab="Sample mean",...) ## add a density curve made from the sample distribution #lines(density(w),col="Blue",lwd=3) # add a density plot ## Add a theoretical normal curve curve(dnorm(x,mean=n*p,sd=sqrt(p*(1-p))),add=TRUE,col="Red",lty=2,lwd=3) } w=mycltb(n=3,iter=10000, p=0.3) w=mycltb(n=5,iter=10000, p=0.3) w=mycltb(n=10,iter=10000, p=0.3) w=mycltb(n=20,iter=10000, p=0.3) w=mycltb(n=3,iter=10000, p=0.7) w=mycltb(n=5,iter=10000, p=0.7) w=mycltb(n=10,iter=10000, p=0.7) w=mycltb(n=20,iter=10000, p=0.7) w=mycltb(n=3,iter=10000, p=0.5) w=mycltb(n=5,iter=10000, p=0.5) w=mycltb(n=10,iter=10000, p=0.5) w=mycltb(n=20,iter=10000, p=0.5)
Conclusion: Again, as the sample size increases, we get a sample distribution closer to normal.
mycltp=function(n,iter,lambda=10,...){ ## r-random sample from the Poisson y=rpois(n*iter,lambda=lambda) ## Place these numbers into a matrix ## The columns will correspond to the iteration and the rows will equal the sample size n data=matrix(y,nr=n,nc=iter,byrow=TRUE) ## apply the function mean to the columns (2) of the matrix ## these are placed in a vector w w=apply(data,2,mean) ## We will make a histogram of the values in w ## How high should we make y axis? ## All the values used to make a histogram are placed in param (nothing is plotted yet) param=hist(w,plot=FALSE) ## Since the histogram will be a density plot we will find the max density ymax=max(param$density) ## To be on the safe side we will add 10% more to this ymax=1.1*ymax ## Make a suitable layout for graphing layout(matrix(c(1,1,2,3),nr=2,nc=2, byrow=TRUE)) ## Now we can make the histogram hist(w,freq=FALSE, ylim=c(0,ymax), col=rainbow(max(w)), main=paste("Histogram of sample mean","\n", "sample size= ",n," iter=",iter," lambda=",lambda,sep=""), xlab="Sample mean",...) ## add a density curve made from the sample distribution #lines(density(w),col="Blue",lwd=3) # add a density plot ## Add a theoretical normal curve curve(dnorm(x,mean=lambda,sd=sqrt(lambda/n)),add=TRUE,col="Red",lty=2,lwd=3) # add a theoretical curve # Now make a new plot # Since y is discrete we should use a barplot barplot(table(y)/(n*iter),col=rainbow(max(y)), main="Barplot of sampled y", ylab ="Rel. Freq",xlab="y" ) x=0:max(y) plot(x,dpois(x,lambda=lambda),type="h",lwd=5,col=rainbow(max(y)), main="Probability function for Poisson", ylab="Probability",xlab="y") } mycltp(n=2,iter=10000, lambda=4) mycltp(n=3,iter=10000, lambda=4) mycltp(n=5,iter=10000, lambda=4) mycltp(n=10,iter=10000, lambda=4) mycltp(n=20,iter=10000, lambda=4) mycltp(n=2,iter=10000, lambda=10) mycltp(n=3,iter=10000, lambda=10) mycltp(n=5,iter=10000, lambda=10) mycltp(n=10,iter=10000, lambda=10) mycltp(n=20,iter=10000, lambda=10)
w = MATH4753ouGamb0004::mycltp(n=10, iter=10000, lambda = 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.