knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "README-"
)

bootstrapFP

CRAN_Status_Badge

Description

This package provides bootstrap algorithms for Finite Population inference, for estimating the variance of the Horvitz--Thompson estimator.

Installation

To install the package from CRAN, run the following code in R:

install.packages("bootstrapFP")

Or, for the development version:

# if not present, install 'devtools' package
install.packages("devtools")
devtools::install_github("rhobis/bootstrapFP")

Usage

library(bootstrapFP) 

### Generate population data ---
N   <- 20; n <- 5
x   <- rgamma(N, scale=10, shape=5)
y   <- abs( 2*x + 3.7*sqrt(x) * rnorm(N) )
pik <- n * x/sum(x)

### Draw a dummy sample ---
s  <- sample(N, n)

### Estimate bootstrap variance ---
bootstrapFP(y = y[s], pik = n/N, B=100, method = "ppSitter")
bootstrapFP(y = y[s], pik = pik[s], B=10, method = "ppHolmberg", design = 'brewer')
bootstrapFP(y = y[s], pik = pik[s], B=10, D=10, method = "ppChauvet")
bootstrapFP(y = y[s], pik = n/N, B=10, method = "dRaoWu")
bootstrapFP(y = y[s], pik = n/N, B=10, method = "dSitter")
bootstrapFP(y = y[s], pik = pik[s], B=10, method = "dAntalTille_UPS", design='brewer')
bootstrapFP(y = y[s], pik = n/N, B=10, method = "wRaoWuYue") 
bootstrapFP(y = y[s], pik = n/N, B=10, method = "wChipperfieldPreston")
bootstrapFP(y = y[s], pik = pik[s], B=10, method = "wGeneralised", distribution = 'normal')

More



rhobis/bootstrapFP documentation built on March 13, 2024, 5:31 p.m.