knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
easyRecg
is designed to host simple tools to facilitate reading and writing digital ECG files.
You can install the development version of easyRecg
from GitHub with:
# install.packages("devtools") devtools::install_github("rickeycarter/easyRecg")
library(easyRecg) library(tibble)
devtools::load_all(".") library(tibble)
A matrix with data for 12-leads can be generated using the function read_muse_xml_ecg
:
# Get sample file file1 <- ecg_example("muse/muse_ecg1.xml") # Read xml file - return a 2d matrix ecg1_2d <- read_muse_xml_ecg(file1, numpyformat = F) dim(ecg1_2d) head(ecg1_2d) # Instead, return a 4d array formatted for AI inputs ecg1_4d <- read_muse_xml_ecg(file1, numpyformat = T) dim(ecg1_4d)
A directory of ecg files can be read and returned as an array using the read_muse_xml_directory
function:
# Sample directory of muse files muse_dir <- system.file("extdata", path = "muse", package = "easyRecg") # Check number of files length(dir(muse_dir)) # Read xml files all_muse <- read_muse_xml_directory(muse_dir) names(all_muse) dim(all_muse$ecg_array)
For more information on how to filter the provided meta data, please see the "Filtering Meta Data" vignette.
meta1 <- read_muse_xml_meta(file1, ids = 1) meta1
ECG XML files included in this package are simulated and do not represent actual patient evaluations.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.