sKDE: Computes an estimation of the density using Kernel Density...

Description Usage Arguments Value References See Also Examples

Description

Computes an estimation of the density using Kernel Density estimator, correcting for fontier effects.

Usage

1
2
sKDE(U, polygon, optimal = TRUE, h = 0.1, parallel = FALSE,
  n_clusters = 4)

Arguments

U

data points.

polygon

polygon on which points lie.

optimal

if TRUE, uses Hpi() to select the optimal bandwidth.

h

only if optimal=FALSE, scalar bandwidth.

parallel

if TRUE, computes the weights using clusters.

n_clusters

only if n_clusters=TRUE, defines the number of clusters.

Value

Returns a list whose elements are: > X: x coordinates at wich estimate is evaluated, > Y: y coordinates at wich estimate is evaluated, > Z: density estimates, > ZNA: density estimates with NA values for points outside the polygon, > H: bandwidth matrix, > W: vector of weights.

References

Charpentier, A. & Gallic, E. (2015). Kernel density estimation based on Ripley’s correction. GeoInformatica, 1-22. (Springer)

See Also

sWeights which this function wraps

Examples

1
2
3
4
data(acci)
# Estimation with correction
smoothed_fin <- sKDE(U = acci$finistere$points, polygon = acci$finistere$polygon,
optimal=TRUE, parallel = FALSE)

ripleyCorr/kdeborder documentation built on May 26, 2019, 1:33 a.m.