#' Suitable for regression:
#' This function is a main function. blindDataRegression allows the user to
#' blind a dataset that is intended for regression
#' @param df_original # original dataframe
#' @param y # name of dependent variable
#' @param predictors # name of predictors, for example c("expert", "conflict)
#' @param plot_cooksdistance # Cook's distances plot
#' @param plot_crplot # component residual plot
#' @param plot_hatvalues # hat-values plot
#' @param plot_qqplot # qq norm plot#'
#' @param plot_studonfitted # studentized residuals on fitted values plot
#' @param hat_cutoff_min = 2 # horizontal line in plot at selected value x mean
#' @param hat_cutoff_max = 3 # horizontal line in plot at selected value x mean
#' @param studres_cutoff_min = -2 # value below which cases gets highlighted
#' @param studres_cutoff_max = 2 # value above which cases gets highlighted
#' @param lowess = TRUE # fit lowess line
#' @param lowesscol = "blue" # color of lowess line
#' @keywords Average with noise per case, Regression
#'
#'
#' @export
plotRegression <- function(df_original,
y,
predictors,
plot_cooksdistance = TRUE,
plot_crplot = TRUE,
plot_hatvalues = TRUE,
plot_qqplot = TRUE,
plot_studonfitted = TRUE,
hat_cutoff_min = 2,
hat_cutoff_max = 3,
studres_cutoff_min = -2,
studres_cutoff_max = 2,
lowess = TRUE,
lowesscol = "blue"){
### Output:
# Blinded dataset with indication in variable names "BLIND_[methodabbreviated]_"
#
# Plot Cooks distance
if(plot_cooksdistance){
plotRegression_CooksDistance(df_original,
y,
predictors)}
# Make component residual plot
if(plot_crplot){
plotRegression_ComponentResidual(df_original,
y,
predictors)}
# Plot hat-values
if(plot_hatvalues){
plotRegression_Hatvalues (df_original,
y,
predictors,
hat_cutoff_min,
hat_cutoff_max)}
# Make QQplot
if(plot_qqplot){
plotRegression_QQ(df_original,
y,
predictors)}
# Plot studentized residuals (Y) on fitted values (X)
if(plot_studonfitted){
plotRegression_StudentizedResidualsOnFittedValues(df_original,
y,
predictors,
studres_cutoff_min,
studres_cutoff_max)}
} # End plotDataRegression
# plotRegression(df_original = df_sim_reg,
# y = "sickleave",
# predictors = c("gender",
# "general_health",
# "stress_at_work",
# "var_of_work_ac"),
# plot_cooksdistance = TRUE,
# plot_crplot = F,
# plot_hatvalues = F,
# plot_qqplot = F,
# plot_studonfitted = F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.