Setup

RNAseq dataset

load required libraries

library(pdacR)
library(ggplot2)
library(ggpubr)
library(plyr)
library(dplyr)
library(mosaic)
library(pdacmolgrad)

dataset <- pdacR::PACA_AU_seq

geneMeans <- rowMeans(dataset$ex)
genesToDelete <- which(geneMeans < .01)

  dataset$ex <- sqrt(dataset$ex[-genesToDelete,])
dataset$featInfo <- dataset$featInfo[-genesToDelete,]

gene_lists <- pdacR::gene_lists


dataset$sampInfo$qpure_score <- 
  as.numeric(as.character(dataset$sampInfo$qpure_score))

Run classifier for guidance

# Tumor classifier
tumor.classifier <- pdacR::Moffitt_classifier_2019

classifierGeneNames <- c(as.vector(tumor.classifier$TSPs))

dataset$ex <- dataset$ex

print(classifierGeneNames[!(classifierGeneNames %in% dataset$featInfo$SYMBOL)])

rownames(dataset$ex) <- make.names(dataset$featInfo$SYMBOL, unique=TRUE)

dataset$sampInfo$SST_subtypes <- as.numeric(create.classif(dat=dataset$ex,
                                              fit=tumor.classifier$fit,
                                              classifier=tumor.classifier)$predprob)

gene_lists$ADEX_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "ADEX")]
gene_lists$Immunogenic_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "Immunogenic")]
gene_lists$Progenitor_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "Pancreatic progenitor")]
gene_lists$Squamous_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "Squamous")]

# =====================================================================
# Calculate expression scores
for(i in names(gene_lists)){
  this_gene_list <- gene_lists[[i]]
  if(class(this_gene_list) %in% "data.frame"){
    this_gene_list <- this_gene_list[,1]
  }
  tmp <- which(dataset$featInfo$SYMBOL %in% this_gene_list)
  dataset$sampInfo[i] <- colMeans((dataset$ex[tmp,]),na.rm = TRUE)
}
# =====================================================================
# Append purIST and molgrad predictions

df = dataset$ex #%>% t %>% scale(scale = F) %>% t
colnames(df) = dataset$sampInfo$icgc_sample_id
df$sym = dataset$featInfo$SYMBOL
df2 = aggregate(df[-which(names(df) == "sym")],
                list(as.character(df$sym)),
                sum)
rownames(df2) = df2$Group.1
df2 = df2[-1]

temp <- projectMolGrad(df2,
                       geneSymbols = rownames(df2))
names(temp) <- paste0('molgrad_', names(temp))
temp$icgc_sample_id <- rownames(temp)
print(head(temp))

dataset$sampInfo <- join(dataset$sampInfo,
                         temp,
                         by = 'icgc_sample_id')
dataset$sampInfo$purIST <- as.numeric(create.classif(df2,
                                                     Moffitt_classifier_2019,
                                                     fit = Moffitt_classifier_2019$fit)$predprob)
dataset$sampInfo$molgrad_scaled <- GGally::rescale01(dataset$sampInfo$molgrad_PDX)

Append TSP scores to expression data frames

# Tumor classifier
tmp <- create.classif(dat=dataset$ex, 
                      fit=tumor.classifier$fit, 
                      classifier=tumor.classifier) 

gene_lists$TSP.tumor <- rownames(tmp$indmat) 

dataset$featInfo <- join(dataset$featInfo, 
                         data.frame(SYMBOL = rownames(tmp$indmat)), 
                         type = "full")

dataset$ex <- rbind(dataset$ex,
                    tmp$indmat)

Results

ADEX samples and ACC

# =====================================================================
# visualize expression in heat map
sampleset <- which(!is.na(dataset$sampInfo$Sample.type))

tmp.k <- 4
tmp.ncusts <- 4

featureset <- which(dataset$featInfo$SYMBOL %in% 
                      c(as.character(pdacR::gene_lists$ICGC.ADEX.Up)))

smallx <- log2(1+dataset$ex[featureset,sampleset])

sampletree <- convert_order_to_dendrogram(order(sapply(smallx,mean)))

# names(dataset$sampInfo)
ColSideColors <-  getSideColors(sampInfo = dataset$sampInfo[sampleset,],
                                sampleTracks = c("HistoSubtype",
                                                 "membership.ordered",
                                                 "Sample.type",
                                                 "qpure_score"),
                                colorlists = list(c("deeppink","purple","navy","darkgreen","skyblue","lightgreen"),
                                                  c("hotpink","darkred","navy","orangered"),
                                                  c("darkgreen","navy","hotpink"),
                                                  c("lightgrey","darkgreen")),
                                drop.levels = TRUE,
                                displaynames = c("Histological Subtype",
                                                 "Cluster assignment from Bailey et al. 2016",
                                                 "Sample type",
                                                 "Purity (qpure)"))

RowSideColors <-  getSideColors(sampInfo = data.frame(exocrine = dataset$featInfo$SYMBOL[featureset] %in% 
                                                        pdacR::gene_lists$Collisson.Exocrine),
                                sampleTracks = c("exocrine"),
                                colorlists = c("white","deeppink"),
                                displaynames = paste("Collisson\nExocrine"))
heatmap.3(x = smallx, 
          scale="row",
          labRow = dataset$featInfo$SYMBOL[featureset],
          col = colorRampPalette(c("blue", "white", "red"))(n = 299),
          Colv = as.dendrogram(sampletree),
          Rowv = TRUE,
          distfun = function(x) as.dist((1-cor(t(x)))/2),
          ColSideColors = ColSideColors$SideColors,
          ColSideColorsSize = 6,
          RowSideColors = t(RowSideColors$SideColors),
          margins = c(5,20))
legend(xy.coords(x=.90,y=1),
       legend=c(ColSideColors$text),
       fill=c(ColSideColors$colors),
       border=FALSE, bty="n",
       y.intersp = 0.9, cex=0.5)
# =====================================================================
# visualize expression in heat map

sampleset <- which(!is.na(dataset$sampInfo$Sample.type))

tmp.k = 4
tmp.ncusts = 4

featureset <- which(dataset$featInfo$SYMBOL %in% 
                      c(as.character(pdacR::gene_lists$ICGC.ADEX.Up)))



sampletree <- convert_order_to_dendrogram(order(dataset$sampInfo$membership.ordered[sampleset], 
                                                dataset$sampInfo$HistoSubtype[sampleset], 
                                                dataset$sampInfo$Sample.type[sampleset],
                                                decreasing = TRUE))


# find which ADEX genes are highly expressed in just ACC samples
acc <- which(dataset$sampInfo$HistoSubtype %in% "Acinar Cell Carcinoma")
acc_names <- names(dataset$ex)[acc]

smallx <- (dataset$ex[featureset,sampleset])

mat <- smallx[order(rowMeans(smallx[, acc_names]), decreasing = TRUE),]

# ------------------

ColSideColors <-  getSideColors(sampInfo = dataset$sampInfo[sampleset,],
                                sampleTracks = c("HistoSubtype",
                                                 "membership.ordered",
                                                 "Sample.type",
                                                 "qpure_score"),
                                colorlists = list(c("deeppink","purple","navy","darkgreen","skyblue","lightgreen"),
                                                  c("hotpink","darkred","navy","orangered"),
                                                  c("darkgreen","navy","hotpink"),
                                                  c("lightgrey","darkgreen")),
                                drop.levels = TRUE,
                                displaynames = c("Histological Subtype",
                                                 "Cluster assignment from Bailey et al. 2016",
                                                 "Sample type",
                                                 "Purity (qpure)"))

RowSideColors <-  getSideColors(sampInfo = data.frame(adex = dataset$featInfo$SYMBOL[featureset] %in%
                                                        pdacR::gene_lists$ICGC.ADEX.Up),

                                sampleTracks = c("adex"),
                                colorlists = list(c("white", "deeppink")),
                                displaynames = c(paste("ADEX")))
heatmap.3(x = mat, 
          scale = "row",
          labRow = dataset$featInfo$SYMBOL[featureset],
          col = colorRampPalette(c("blue", "white", "red"))(n = 299),
          Colv = sampletree,
          Rowv = FALSE,
          ColSideColors = ColSideColors$SideColors,
          ColSideColorsSize = 6,
          RowSideColorsSize = 6,
          RowSideColors = t(RowSideColors$SideColors),
          margins = c(5,20))
legend(xy.coords(x=.90,y=1),
       legend=c(ColSideColors$text),
       fill=c(ColSideColors$colors),
       border=FALSE, bty="n",
       y.intersp = 0.9, cex=0.5)
heatmap.3(x = mat, 
          scale = "row",
          labRow = dataset$featInfo$SYMBOL[featureset],
          col = colorRampPalette(c("blue", "white", "red"))(n = 299),
          Colv = convert_order_to_dendrogram(order( dataset$sampInfo$membership.ordered[sampleset],
                                                dataset$sampInfo$HistoSubtype[sampleset], 

                                                dataset$sampInfo$Sample.type[sampleset],
                                                decreasing = TRUE,
                                                na.last = FALSE)),
          Rowv = FALSE,
          ColSideColors = ColSideColors$SideColors,
          ColSideColorsSize = 6,
          RowSideColorsSize = 6,
          RowSideColors = t(RowSideColors$SideColors),
          margins = c(5,20))
legend(xy.coords(x=.90,y=1),
       legend=c(ColSideColors$text),
       fill=c(ColSideColors$colors),
       border=FALSE, bty="n",
       y.intersp = 0.9, cex=0.5)

Consensus clustering

# =====================================================================
# visualize expression in heat map

sampleset <- which(!is.na(dataset$sampInfo$membership.ordered))

tmp.k = 3
tmp.ncusts = 3

featureset <- which(dataset$featInfo$SYMBOL %in% 
                      c(as.character(pdacR::gene_lists$ICGC.SAM$symbols[which(pdacR::gene_lists$ICGC.SAM$type %in% "ADEX")])))

smallx <- (dataset$ex[featureset,sampleset])

sampletree <- ConsensusClusterPlus::ConsensusClusterPlus(d = t(as.matrix(smallx)),
                                                         seed = 1234,
                                                         pFeature = 0.8,
                                                         pItem = 0.8,
                                                         maxK = 6,
                                                         reps=200,
                                                         distance="pearson",
                                                         clusterAlg="km")[[tmp.k]]$consensusTree

# ------------------

ColSideColors <-  getSideColors(sampInfo = dataset$sampInfo[sampleset,],
                                sampleTracks = c("HistoSubtype",
                                                 "membership.ordered",
                                                 "Sample.type",
                                                 "qpure_score"),
                                colorlists = list(c("deeppink","purple","navy","darkgreen","skyblue","lightgreen"),
                                                  c("hotpink","darkred","navy","orangered"),
                                                  c("darkgreen","navy","hotpink"),
                                                  c("lightgrey","darkgreen")),
                                drop.levels = TRUE,
                                displaynames = c("Histological Subtype",
                                                 "Cluster assignment from Bailey et al. 2016",
                                                 "Sample type",
                                                 "Purity (qpure)"))

RowSideColors <-  getSideColors(sampInfo = data.frame(adex = dataset$featInfo$SYMBOL[featureset] %in%
                                                        pdacR::gene_lists$ICGC.ADEX.Up),

                                sampleTracks = c("adex"),
                                colorlists = list(c("white", "deeppink")),
                                displaynames = c(paste("ADEX")))
heatmap.3(x = smallx, 
          scale = "row",
          labRow = dataset$featInfo$SYMBOL[featureset],
          col = colorRampPalette(c("blue", "white", "red"))(n = 299),
          Colv = convert_order_to_dendrogram(order( dataset$sampInfo$membership.ordered[sampleset],
                                                dataset$sampInfo$HistoSubtype[sampleset], 

                                                dataset$sampInfo$Sample.type[sampleset],
                                                decreasing = TRUE,
                                                na.last = FALSE)),
          Rowv = as.dendrogram(sampletree),
          ColSideColors = ColSideColors$SideColors,
          ColSideColorsSize = 6,
          RowSideColorsSize = 6,
          distfun = function(x) as.dist((1-cor(t(x)))/2),
          RowSideColors = t(RowSideColors$SideColors),
          margins = c(5,20))
legend(xy.coords(x=.90,y=1),
       legend=c(ColSideColors$text),
       fill=c(ColSideColors$colors),
       border=FALSE, bty="n",
       y.intersp = 0.9, cex=0.5)

Exocrine and ADEX in PACA_AU_seq

ggplot(dat = dataset$sampInfo, aes(y = Collisson.Exocrine,
                                   x = qpure_score)) +
  geom_point(alpha = 0.5,
             size = 4,
             aes(color = HistoSubtype,
                 shape = Sample.type))+
  scale_color_manual(values = c("Acinar Cell Carcinoma" = "deeppink",
                                "Intraductal Papillary Mucinous Neoplasm with invasion" = "purple",
                                "Pancreatic Ductal Adenocarcinoma" = "navy",
                                "PDA -  signet ring" = "darkgreen",
                                "PDA - Adenosquamous carcinoma" = "skyblue",
                                "PDA - Undifferentiated (anaplastic) carcinoma" = "lightgreen")) +

  theme_pubr() +
  labs(title = "PACA-AU RNAseq samples") +
  ylab("Exocrine signature average") +
  xlab("Purity (qpure)")

ggplot(dat = dataset$sampInfo, aes(y = ICGC.ADEX.Up, 
                                   x = qpure_score)) +
  geom_point(alpha = 0.5, 
             size = 4,
             aes(color = HistoSubtype,
                 shape = Sample.type)) +
  scale_color_manual(values = c("Acinar Cell Carcinoma" = "deeppink",
                                "Intraductal Papillary Mucinous Neoplasm with invasion" = "purple",
                                "Pancreatic Ductal Adenocarcinoma" = "navy",
                                "PDA -  signet ring" = "darkgreen",
                                "PDA - Adenosquamous carcinoma" = "skyblue",
                                "PDA - Undifferentiated (anaplastic) carcinoma" = "lightgreen")) +
  theme_pubr() +
  labs(title = "PACA-AU RNAseq samples") +
  ylab("ADEX signature average") +
  xlab("Purity (qpure)") 
dataset$sampInfo$likeandy <- "Other hist."

dataset$sampInfo$likeandy[dataset$sampInfo$HistoSubtype %in% "Pancreatic Ductal Adenocarcinoma" &

                       dataset$sampInfo$Sample.type %in% "Metastatic tumour"] <- "Met. PDAC"

dataset$sampInfo$likeandy[dataset$sampInfo$HistoSubtype %in% "Pancreatic Ductal Adenocarcinoma" &

                       dataset$sampInfo$Sample.type %in% "Primary tumour"] <- "Primary PDAC"

dataset$sampInfo$likeandy[dataset$sampInfo$HistoSubtype %in% "Acinar Cell Carcinoma"] <- "ACC"

dataset$sampInfo$likeandy <- droplevels(factor(dataset$sampInfo$likeandy))



#match aguirre aesthetics

ggplot(dat = subset(dataset$sampInfo,Sample.type %in% c("Metastatic tumour","Primary tumour")),
       aes(y = Collisson.Exocrine,
           x = qpure_score)) +
  geom_point(alpha = 0.8,
             shape = 21,
             size = 5,
             aes(fill = likeandy)) +
  scale_fill_manual(values = c("ACC" = "black",
                                "Primary PDAC" = "#619CFF",
                                "Met. PDAC" = "#F8766D",
                                "Other hist." = "grey")) +
  theme_pubr() +
  scale_x_continuous(limits = c(0, 100)) +
  labs(title = "PACA-AU RNAseq samples",color="Type") +
  ylab("Exocrine signature average") +
  xlab("Purity (qpure)")

#match aguirre aesthetics

ggplot(dat = subset(dataset$sampInfo,Sample.type %in% c("Metastatic tumour","Primary tumour")),
       aes(y = ADEX_unique,
           x = qpure_score)) +
  geom_point(alpha = 0.8,
             shape = 21,
             size = 5,
             aes(fill = likeandy)) +
  scale_fill_manual(values = c("ACC" = "black",
                                "Primary PDAC" = "#619CFF",
                                "Met. PDAC" = "#00BA38",
                                "Other hist." = "grey")) +
  theme_pubr() +
  scale_x_continuous(limits = c(0, 100)) +
  labs(title = "PACA-AU RNAseq samples",color="Type") +
  ylab("ADEX signature average") +
  xlab("Purity (qpure)")

# molgrad and purist
ggplot(dat = subset(dataset$sampInfo,Sample.type %in% c("Metastatic tumour","Primary tumour")),
       aes(y = purIST,
           x = qpure_score)) +
  geom_point(alpha = 0.8,
             shape = 21,
             size = 5,
             aes(fill = likeandy)) +
  scale_fill_manual(values = c("ACC" = "black",
                                "Primary PDAC" = "#619CFF",
                                "Met. PDAC" = "#00BA38",
                                "Other hist." = "grey")) +
  theme_pubr() +
  scale_x_continuous(limits = c(0, 100)) +
  labs(title = "PACA-AU RNAseq samples",color="Type") +
  ylab("purIST") +
  xlab("Purity (qpure)")

ggplot(dat = subset(dataset$sampInfo,Sample.type %in% c("Metastatic tumour","Primary tumour")),
       aes(y = molgrad_PDX,
           x = qpure_score)) +
  geom_point(alpha = 0.8,
             shape = 21,
             size = 5,
             aes(fill = likeandy)) +
  scale_fill_manual(values = c("ACC" = "black",
                                "Primary PDAC" = "#619CFF",
                                "Met. PDAC" = "#00BA38",
                                "Other hist." = "grey")) +
  theme_pubr() +
  scale_x_continuous(limits = c(0, 100)) +
  labs(title = "PACA-AU RNAseq samples",color="Type") +
  ylab("molgrad_PDX") +
  xlab("Purity (qpure)")
# df <- pdacR::PACA_CA_seq
# 
# 
# geneMeans <- rowMeans(df$ex)
# genesToDelete <- which(geneMeans < .01)
# 
#   df$ex <- sqrt(df$ex[-genesToDelete,])
# df$featInfo <- df$featInfo[-genesToDelete,]
# 
# gene_lists <- pdacR::gene_lists
# 
# 
# df$sampInfo$qpure_score <- 
#   as.numeric(as.character(df$sampInfo$qpure_score))
# 
# 
# # =====================================================================
# # Calculate expression scores
# 
# gene_lists$ADEX_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "ADEX")]
# gene_lists$Immunogenic_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "Immunogenic")]
# gene_lists$Progenitor_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "Pancreatic progenitor")]
# gene_lists$Squamous_unique <- gene_lists$ICGC.SAM$symbols[which(gene_lists$ICGC.SAM$type %in% "Squamous")]
# 
# for(i in names(gene_lists)){
#   this_gene_list <- gene_lists[[i]]
#   if(class(this_gene_list) %in% "data.frame"){
#     this_gene_list <- this_gene_list[,1]
#   }
#   tmp <- which(df$featInfo$SYMBOL %in% this_gene_list)
#   df$sampInfo[i] <- colMeans((df$ex[tmp,]),na.rm = TRUE)
# }
# 
# 
# 
# ggplot(dat = df$sampInfo, aes(y = Collisson.Exocrine,
#                                    x = qpure_score)) +
#   geom_point(alpha = 0.5,
#              size = 4,
#              aes(color = HistoSubtype,
#                  shape = Sample.type))+
#   scale_color_manual(values = c("Acinar Cell Carcinoma" = "deeppink",
#                                 "Intraductal Papillary Mucinous Neoplasm with invasion" = "purple",
#                                 "Pancreatic Ductal Adenocarcinoma" = "navy",
#                                 "PDA -  signet ring" = "darkgreen",
#                                 "PDA - Adenosquamous carcinoma" = "skyblue",
#                                 "PDA - Undifferentiated (anaplastic) carcinoma" = "lightgreen")) +
#   
#   theme_pubr() +
#   labs(title = "PACA-AU RNAseq samples") +
#   ylab("Exocrine signature average") +
#   xlab("Purity (qpure)")
# 
# ggplot(dat = df$sampInfo, aes(y = ICGC.ADEX.Up, 
#                                    x = qpure_score)) +
#   geom_point(alpha = 0.5, 
#              size = 4,
#              aes(color = HistoSubtype,
#                  shape = Sample.type)) +
#   scale_color_manual(values = c("Acinar Cell Carcinoma" = "deeppink",
#                                 "Intraductal Papillary Mucinous Neoplasm with invasion" = "purple",
#                                 "Pancreatic Ductal Adenocarcinoma" = "navy",
#                                 "PDA -  signet ring" = "darkgreen",
#                                 "PDA - Adenosquamous carcinoma" = "skyblue",
#                                 "PDA - Undifferentiated (anaplastic) carcinoma" = "lightgreen")) +
#   theme_pubr() +
#   labs(title = "PACA-AU RNAseq samples") +
#   ylab("ADEX signature average") +
#   xlab("Purity (qpure)") 
# df$sampInfo$likeandy <- "Other hist."
# 
# df$sampInfo$likeandy[df$sampInfo$HistoSubtype %in% "Pancreatic Ductal Adenocarcinoma" &
# 
#                        df$sampInfo$Sample.type %in% "Metastatic tumour"] <- "Met. PDAC"
# 
# df$sampInfo$likeandy[df$sampInfo$HistoSubtype %in% "Pancreatic Ductal Adenocarcinoma" &
# 
#                        df$sampInfo$Sample.type %in% "Primary tumour"] <- "Primary PDAC"
# 
# df$sampInfo$likeandy[df$sampInfo$HistoSubtype %in% "Acinar Cell Carcinoma"] <- "ACC"
# 
# df$sampInfo$likeandy <- droplevels(factor(df$sampInfo$likeandy))
# 
#  
# 
# #match aguirre aesthetics
# 
# ggplot(dat = subset(df$sampInfo,df$sampInfo$Sample.type %in% c("Metastatic tumour","Primary tumour")),
#        aes(y = Collisson.Exocrine,
#            x = qpure_score)) +
#   geom_point(alpha = 0.8,
#              shape = 21,
#              size = 5,
#              aes(fill = likeandy)) +
#   scale_fill_manual(values = c("ACC" = "black",
#                                 "Primary PDAC" = "#619CFF",
#                                 "Met. PDAC" = "#F8766D",
#                                 "Other hist." = "grey")) +
#   theme_pubr() +
#   scale_x_continuous(limits = c(0, 100)) +
#   labs(title = "PACA-AU RNAseq samples",color="Type") +
#   ylab("Exocrine signature average") +
#   xlab("Purity (qpure)")
# 
# #match aguirre aesthetics
# 
# ggplot(dat = subset(df$sampInfo,df$sampInfo$Sample.type %in% c("Metastatic tumour","Primary tumour")),
#        aes(y = ADEX_unique,
#            x = qpure_score)) +
#   geom_point(alpha = 0.8,
#              shape = 21,
#              size = 5,
#              aes(fill = likeandy)) +
#   scale_fill_manual(values = c("ACC" = "black",
#                                 "Primary PDAC" = "#619CFF",
#                                 "Met. PDAC" = "#00BA38",
#                                 "Other hist." = "grey")) +
#   theme_pubr() +
#   scale_x_continuous(limits = c(0, 100)) +
#   labs(title = "PACA-AU RNAseq samples",color="Type") +
#   ylab("ADEX signature average") +
#   xlab("Purity (qpure)")
# ggplot(data = dataset$sampInfo, aes(x = HistoSubtype,
#                                     y = qpure_score,
#                                     fill = HistoSubtype)) +
#   geom_boxplot(aes(stat = "identity")) + 
#   theme_pubr() +
#   theme(axis.text.x = element_text(angle = 90, hjust = 1))
# 
# for(genes in noquote(names(gene_lists))) {
#   
#   d <- data.frame(score = dataset$sampInfo[[genes]],
#                   type = dataset$sampInfo$HistoSubtype)
#   
#   p <- ggplot(data = d, aes(x = type,
#                             y = score,
#                             fill = type)) +
#   geom_dotplot(aes(fill = type),
#                  binaxis='y', 
#                  stackdir='center',
#                  binwidth = 0.115,
#                  dotsize=10) + 
#   ylim(0,10) +
#   theme_pubr() +
#   labs(title = genes) +
#   theme(axis.text.x = element_text(angle = 90, hjust = 1))
#   
#   print(p)
# }


rkawalerski/pdacR documentation built on Jan. 25, 2025, 10:50 a.m.