knitr::opts_chunk$set(echo = F, collapse = T,fig.height = 2.5)
library(dplyr)
library(pdacR)
library(pdacmolgrad)
library(survival)
library(survminer)

TCGA

Generate and bind the mol grad scores

df = pdacR::TCGA_PAAD$ex[,which(pdacR::TCGA_PAAD$sampInfo$Decision == 'whitelist')] # %>% t %>% scale(scale = F) %>% t
temp = projectMolGrad(log2(1+df), geneSymbols = TCGA_PAAD$featInfo$SYMBOL)
names(temp) <- paste0("molgrad_",names(temp))
temp$Tumor.Sample.ID = rownames(temp)

df = TCGA_PAAD$ex[,which(pdacR::TCGA_PAAD$sampInfo$Decision == 'whitelist')]
colnames(df) = paste0("Sample",seq(from=1,to=ncol(df),by=1))
# df = cbind(TCGA_PAAD$featInfo$SYMBOL,log2(1+df))
# colnames(df)[1] = "GeneSym"
# write.table(x = df[,1:10], file = "./TCGA_first10.tsv", sep = "\t", row.names = F)
rownames(df) = TCGA_PAAD$featInfo$SYMBOL
sampInfo = dplyr::full_join(TCGA_PAAD$sampInfo[which(pdacR::TCGA_PAAD$sampInfo$Decision == 'whitelist'),],
                            temp, by = 'Tumor.Sample.ID')
sampInfo$purIST = as.numeric(create.classif(df,
                                            Moffitt_classifier_2019,
                                            fit = Moffitt_classifier_2019$fit)$predprob)

hist(temp$molgrad_PDX)
sampInfo$survivalB = sampInfo$survivalA/30 # Months
# Generate Images
plots = list()

# Dropped stage X or stage not reported samples
tmp.df <-sampInfo[,c("survivalA","censorA.0yes.1no",
                     "molgrad_PDX","purIST")]
tmp.df <- droplevels(tmp.df)
tmp.df$censorA.0yes.1no <- as.integer(as.character(tmp.df$censorA.0yes.1no))
tmp.df$scaled_molgrad = GGally::rescale01(tmp.df$molgrad_PDX)

\newpage

# Cox plot generation
#tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      scaled_molgrad,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      molgrad_PDX,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      purIST,
                   data = tmp.df)

#plots$cox = ggforest(fit.coxph, data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

\newpage

ICGC-AU (array - as used in paper)

Generate and bind the mol grad scores

df = pdacR::PACA_AU_array$ex #%>% t %>% scale(scale = F) %>% t
colnames(df) = PACA_AU_array$sampInfo$submitted_donor_id
df$sym = PACA_AU_array$featInfo$SYMBOL
df2 = aggregate(df[-which(names(df) == "sym")],
                list(as.character(df$sym)),
                sum)
rownames(df2) = df2$Group.1
df2 = df2[-1]
df2 = df2[,which(colnames(df2) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535'))]
temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2), normalize = 'raw')

#temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2))
names(temp) <- paste0("molgrad_",names(temp))
temp$submitted_donor_id = rownames(temp)

temp[which(rownames(temp) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535')),]

df = as.data.frame(PACA_AU_array$ex)
colnames(df) = PACA_AU_array$sampInfo$submitted_donor_id
df$sym = PACA_AU_array$featInfo$SYMBOL
df2 = aggregate(df[-which(names(df) == "sym")],
                list(as.character(df$sym)),
                sum)
rownames(df2) = df2$Group.1
df2 = df2[-1]
sampInfo = dplyr::full_join(PACA_AU_array$sampInfo,
                            temp, by = 'submitted_donor_id')
sampInfo$purIST = as.numeric(create.classif(df2,
                                            Moffitt_classifier_2019,
                                            fit = Moffitt_classifier_2019$fit)$predprob)

hist(temp$molgrad_PDX)
# Cox plot generation
#tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      scaled_molgrad,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      molgrad_PDX,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      purIST,
                   data = tmp.df)

#plots$cox = ggforest(fit.coxph, data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

ICGC-AU (Seq)

Generate and bind the mol grad scores

df = pdacR::PACA_AU_seq$ex #%>% t %>% scale(scale = F) %>% t
colnames(df) = PACA_AU_seq$sampInfo$submitted_donor_id
# df$sym = PACA_AU_seq$featInfo$SYMBOL
# df2 = aggregate(df[-which(names(df) == "sym")],
#                list(as.character(df$sym)),
#                sum)
# rownames(df2) = df2$Group.1
# df2 = df2[-1]
#df = df[,which(colnames(df) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535'))]
temp = projectMolGrad(log2(1+df), geneSymbols = pdacR::PACA_AU_seq$featInfo$SYMBOL, normalize = 'raw')
#temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2))
names(temp) <- paste0("molgrad_",names(temp))
temp$submitted_donor_id = rownames(temp)

temp[which(rownames(temp) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535')),]

df = as.data.frame(PACA_AU_seq$ex)
colnames(df) = PACA_AU_seq$sampInfo$submitted_donor_id
df$sym = PACA_AU_seq$featInfo$SYMBOL
df2 = aggregate(df[-which(names(df) == "sym")],
                list(as.character(df$sym)),
                sum)
rownames(df2) = df2$Group.1
df2 = df2[-1]
sampInfo = dplyr::full_join(PACA_AU_seq$sampInfo,
                            temp, by = 'submitted_donor_id')
sampInfo = sampInfo[-which(sampInfo$submitted_donor_id == "ICGC_0099.1"),]
sampInfo$purIST = as.numeric(create.classif(df2,
                                            Moffitt_classifier_2019,
                                            fit = Moffitt_classifier_2019$fit)$predprob)

hist(temp$molgrad_PDX)
sampInfo$survivalB = sampInfo$survivalA/30 # Months
# Generate Images
plots = list()

# Dropped stage X or stage not reported samples
tmp.df <-sampInfo[,c("survivalA","censorA.0yes.1no",
                     "molgrad_PDX","purIST")]
tmp.df <- droplevels(tmp.df)
tmp.df$censorA.0yes.1no <- as.integer(as.character(tmp.df$censorA.0yes.1no))
tmp.df$scaled_molgrad = GGally::rescale01(tmp.df$molgrad_PDX)

\newpage

# Cox plot generation
#tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      scaled_molgrad,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      molgrad_PDX,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censorA.0yes.1no) ~ 
                      purIST,
                   data = tmp.df)

#plots$cox = ggforest(fit.coxph, data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

Puleo

Generate and bind the mol grad scores

df = pdacR::Puleo_array$ex #%>% t %>% scale(scale = F) %>% t
colnames(df) = Puleo_array$sampInfo$Sample.name
# df$sym = PACA_AU_seq$featInfo$SYMBOL
# df2 = aggregate(df[-which(names(df) == "sym")],
#                list(as.character(df$sym)),
#                sum)
# rownames(df2) = df2$Group.1
# df2 = df2[-1]
temp = projectMolGrad(log2(1+df), geneSymbols = pdacR::Puleo_array$featInfo$SYMBOL, normalize = 'raw')
#temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2))
names(temp) <- paste0("molgrad_",names(temp))
temp$Sample.name = rownames(temp)

df = as.data.frame(Puleo_array$ex)
colnames(df) = Puleo_array$sampInfo$Sample.name
rownames(df) = Puleo_array$featInfo$SYMBOL
# df$sym = Puleo_array$featInfo$SYMBOL
# df2 = aggregate(df[-which(names(df) == "sym")],
#                 list(as.character(df$sym)),
#                 sum)
# rownames(df2) = df2$Group.1
# df2 = df2[-1]
sampInfo = dplyr::full_join(Puleo_array$sampInfo,
                            temp, by = 'Sample.name')
sampInfo$purIST = as.numeric(create.classif(df,
                                            Moffitt_classifier_2019,
                                            fit = Moffitt_classifier_2019$fit)$predprob)

hist(temp$molgrad_PDX)
sampInfo$survivalB = sampInfo$survivalA/30 # Months
# Generate Images
plots = list()

# Dropped stage X or stage not reported samples
tmp.df <-sampInfo[,c("survivalA","censor.0yes.1no",
                     "molgrad_PDX","purIST")]
tmp.df <- droplevels(tmp.df)
tmp.df$censor.0yes.1no <- as.integer(as.character(tmp.df$censor.0yes.1no))
tmp.df$scaled_molgrad = GGally::rescale01(tmp.df$molgrad_PDX)

\newpage

# Cox plot generation
#tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censor.0yes.1no) ~ 
                      scaled_molgrad,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censor.0yes.1no) ~ 
                      molgrad_PDX,
                   data = tmp.df)
ggforest(fit.coxph, data = tmp.df)

fit.coxph <- coxph(Surv(time = tmp.df$survivalA,
                        event = tmp.df$censor.0yes.1no) ~ 
                      purIST,
                   data = tmp.df)

#plots$cox = ggforest(fit.coxph, data = tmp.df)
ggforest(fit.coxph, data = tmp.df)


rkawalerski/pdacR documentation built on Jan. 25, 2025, 10:50 a.m.