knitr::opts_chunk$set(echo = F, collapse = T,fig.height = 2.5) library(dplyr) library(pdacR) library(pdacmolgrad) library(survival) library(survminer)
df = pdacR::TCGA_PAAD$ex[,which(pdacR::TCGA_PAAD$sampInfo$Decision == 'whitelist')] # %>% t %>% scale(scale = F) %>% t temp = projectMolGrad(log2(1+df), geneSymbols = TCGA_PAAD$featInfo$SYMBOL) names(temp) <- paste0("molgrad_",names(temp)) temp$Tumor.Sample.ID = rownames(temp) df = TCGA_PAAD$ex[,which(pdacR::TCGA_PAAD$sampInfo$Decision == 'whitelist')] colnames(df) = paste0("Sample",seq(from=1,to=ncol(df),by=1)) # df = cbind(TCGA_PAAD$featInfo$SYMBOL,log2(1+df)) # colnames(df)[1] = "GeneSym" # write.table(x = df[,1:10], file = "./TCGA_first10.tsv", sep = "\t", row.names = F) rownames(df) = TCGA_PAAD$featInfo$SYMBOL sampInfo = dplyr::full_join(TCGA_PAAD$sampInfo[which(pdacR::TCGA_PAAD$sampInfo$Decision == 'whitelist'),], temp, by = 'Tumor.Sample.ID') sampInfo$purIST = as.numeric(create.classif(df, Moffitt_classifier_2019, fit = Moffitt_classifier_2019$fit)$predprob) hist(temp$molgrad_PDX)
sampInfo$survivalB = sampInfo$survivalA/30 # Months # Generate Images plots = list() # Dropped stage X or stage not reported samples tmp.df <-sampInfo[,c("survivalA","censorA.0yes.1no", "molgrad_PDX","purIST")] tmp.df <- droplevels(tmp.df) tmp.df$censorA.0yes.1no <- as.integer(as.character(tmp.df$censorA.0yes.1no)) tmp.df$scaled_molgrad = GGally::rescale01(tmp.df$molgrad_PDX)
\newpage
# Cox plot generation #tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ scaled_molgrad, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ molgrad_PDX, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ purIST, data = tmp.df) #plots$cox = ggforest(fit.coxph, data = tmp.df) ggforest(fit.coxph, data = tmp.df)
\newpage
df = pdacR::PACA_AU_array$ex #%>% t %>% scale(scale = F) %>% t colnames(df) = PACA_AU_array$sampInfo$submitted_donor_id df$sym = PACA_AU_array$featInfo$SYMBOL df2 = aggregate(df[-which(names(df) == "sym")], list(as.character(df$sym)), sum) rownames(df2) = df2$Group.1 df2 = df2[-1] df2 = df2[,which(colnames(df2) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535'))] temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2), normalize = 'raw') #temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2)) names(temp) <- paste0("molgrad_",names(temp)) temp$submitted_donor_id = rownames(temp) temp[which(rownames(temp) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535')),] df = as.data.frame(PACA_AU_array$ex) colnames(df) = PACA_AU_array$sampInfo$submitted_donor_id df$sym = PACA_AU_array$featInfo$SYMBOL df2 = aggregate(df[-which(names(df) == "sym")], list(as.character(df$sym)), sum) rownames(df2) = df2$Group.1 df2 = df2[-1] sampInfo = dplyr::full_join(PACA_AU_array$sampInfo, temp, by = 'submitted_donor_id') sampInfo$purIST = as.numeric(create.classif(df2, Moffitt_classifier_2019, fit = Moffitt_classifier_2019$fit)$predprob) hist(temp$molgrad_PDX)
# Cox plot generation #tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ scaled_molgrad, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ molgrad_PDX, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ purIST, data = tmp.df) #plots$cox = ggforest(fit.coxph, data = tmp.df) ggforest(fit.coxph, data = tmp.df)
df = pdacR::PACA_AU_seq$ex #%>% t %>% scale(scale = F) %>% t colnames(df) = PACA_AU_seq$sampInfo$submitted_donor_id # df$sym = PACA_AU_seq$featInfo$SYMBOL # df2 = aggregate(df[-which(names(df) == "sym")], # list(as.character(df$sym)), # sum) # rownames(df2) = df2$Group.1 # df2 = df2[-1] #df = df[,which(colnames(df) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535'))] temp = projectMolGrad(log2(1+df), geneSymbols = pdacR::PACA_AU_seq$featInfo$SYMBOL, normalize = 'raw') #temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2)) names(temp) <- paste0("molgrad_",names(temp)) temp$submitted_donor_id = rownames(temp) temp[which(rownames(temp) %in% c('ICGC_0543','ICGC_0521','ICGC_0522','ICGC_0535')),] df = as.data.frame(PACA_AU_seq$ex) colnames(df) = PACA_AU_seq$sampInfo$submitted_donor_id df$sym = PACA_AU_seq$featInfo$SYMBOL df2 = aggregate(df[-which(names(df) == "sym")], list(as.character(df$sym)), sum) rownames(df2) = df2$Group.1 df2 = df2[-1] sampInfo = dplyr::full_join(PACA_AU_seq$sampInfo, temp, by = 'submitted_donor_id') sampInfo = sampInfo[-which(sampInfo$submitted_donor_id == "ICGC_0099.1"),] sampInfo$purIST = as.numeric(create.classif(df2, Moffitt_classifier_2019, fit = Moffitt_classifier_2019$fit)$predprob) hist(temp$molgrad_PDX)
sampInfo$survivalB = sampInfo$survivalA/30 # Months # Generate Images plots = list() # Dropped stage X or stage not reported samples tmp.df <-sampInfo[,c("survivalA","censorA.0yes.1no", "molgrad_PDX","purIST")] tmp.df <- droplevels(tmp.df) tmp.df$censorA.0yes.1no <- as.integer(as.character(tmp.df$censorA.0yes.1no)) tmp.df$scaled_molgrad = GGally::rescale01(tmp.df$molgrad_PDX)
\newpage
# Cox plot generation #tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ scaled_molgrad, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ molgrad_PDX, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censorA.0yes.1no) ~ purIST, data = tmp.df) #plots$cox = ggforest(fit.coxph, data = tmp.df) ggforest(fit.coxph, data = tmp.df)
df = pdacR::Puleo_array$ex #%>% t %>% scale(scale = F) %>% t colnames(df) = Puleo_array$sampInfo$Sample.name # df$sym = PACA_AU_seq$featInfo$SYMBOL # df2 = aggregate(df[-which(names(df) == "sym")], # list(as.character(df$sym)), # sum) # rownames(df2) = df2$Group.1 # df2 = df2[-1] temp = projectMolGrad(log2(1+df), geneSymbols = pdacR::Puleo_array$featInfo$SYMBOL, normalize = 'raw') #temp = projectMolGrad(log2(1+df2), geneSymbols = rownames(df2)) names(temp) <- paste0("molgrad_",names(temp)) temp$Sample.name = rownames(temp) df = as.data.frame(Puleo_array$ex) colnames(df) = Puleo_array$sampInfo$Sample.name rownames(df) = Puleo_array$featInfo$SYMBOL # df$sym = Puleo_array$featInfo$SYMBOL # df2 = aggregate(df[-which(names(df) == "sym")], # list(as.character(df$sym)), # sum) # rownames(df2) = df2$Group.1 # df2 = df2[-1] sampInfo = dplyr::full_join(Puleo_array$sampInfo, temp, by = 'Sample.name') sampInfo$purIST = as.numeric(create.classif(df, Moffitt_classifier_2019, fit = Moffitt_classifier_2019$fit)$predprob) hist(temp$molgrad_PDX)
sampInfo$survivalB = sampInfo$survivalA/30 # Months # Generate Images plots = list() # Dropped stage X or stage not reported samples tmp.df <-sampInfo[,c("survivalA","censor.0yes.1no", "molgrad_PDX","purIST")] tmp.df <- droplevels(tmp.df) tmp.df$censor.0yes.1no <- as.integer(as.character(tmp.df$censor.0yes.1no)) tmp.df$scaled_molgrad = GGally::rescale01(tmp.df$molgrad_PDX)
\newpage
# Cox plot generation #tmp.df$scaled.percent_pos <- tmp.df$percent_pos / sd.split fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censor.0yes.1no) ~ scaled_molgrad, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censor.0yes.1no) ~ molgrad_PDX, data = tmp.df) ggforest(fit.coxph, data = tmp.df) fit.coxph <- coxph(Surv(time = tmp.df$survivalA, event = tmp.df$censor.0yes.1no) ~ purIST, data = tmp.df) #plots$cox = ggforest(fit.coxph, data = tmp.df) ggforest(fit.coxph, data = tmp.df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.