detect_ | R Documentation |
Bibliographic data can be stored in a number of different file
types, meaning that detecting consistent attributes of those files is
necessary if they are to be parsed accurately. These functions attempt to
identify some of those key file attributes. Specifically, detect_parser()
determines which parse_ function to use; detect_delimiter()
and detect_lookup()
identify different attributes of RIS files; and
detect_year()
attempts to fill gaps in publication years from other
information stored in a tibble
.
detect_parser(x)
detect_delimiter(x)
detect_lookup(tags)
detect_year(df)
x |
A character vector containing bibliographic data |
tags |
A character vector containing RIS tags. |
df |
a data.frame containing bibliographic data |
detect_parser()
and detect_delimiter()
return a length-1
character; detect_year()
returns a character vector listing estimated
publication years; and detect_lookup()
returns a data.frame.
revtools <- c(
"",
"PMID- 31355546",
"VI - 10",
"IP - 4",
"DP - 2019 Dec",
"TI - revtools: An R package to support article
screening for evidence synthesis.",
"PG - 606-614",
"LID - 10.1002/jrsm.1374 [doi]",
"AU - Westgate MJ",
"LA - eng",
"PT - Journal Article",
"JT - Research Synthesis Methods",
""
)
# detect basic attributes of ris files
detect_parser(revtools)
detect_delimiter(revtools)
# determine which tag format to use
tags <- trimws(unlist(lapply(
strsplit(revtools, "- "),
function(a){a[1]}
)))
pubmed_tag_list <- detect_lookup(tags[!is.na(tags)])
# find year data in other columns
df <- as.data.frame(parse_pubmed(revtools))
df$year <- detect_year(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.