run_DAMCMC | R Documentation |
Data-augmentation Markov chain Monte Carlo to fit the stochastic SIR model to discretely observed incidence counts with the PD-SIR algorithm.
run_DAMCMC(
Y,
N = 10000,
rho = 1,
param = "bg",
approx = "ldp",
iota_dist = "exponential",
gener = FALSE,
b = 1/2,
thin = 1,
theta_0,
print_i = FALSE,
save_SS = FALSE,
par_prior = list(a_beta = 0.01, b_beta = 1, a_gamma = 1, b_gamma = 1, a_R0 = 2, b_R0 =
2, a_lambda = 1, b_lambda = 1)
)
Y |
observed data |
N |
number of iterations of the Markov chain |
rho |
proportion of the latent data updated each iteration |
param |
c("bg", "bR"); parameterize the models in terms of (beta, gamma) or (beta, R0) |
approx |
c("poisson", "ldp"); whether to approximate the distribution of the infection times with a poisson process or a linear death process |
iota_dist |
c("exponential", "weibull"); distribution of the infection period |
gener |
logical; whether to use the generalized SIR of Severo (1972) |
b |
parameter of the generalized SIR |
thin |
thinning parameter for the Markov chain |
theta_0 |
initial value for the parameters |
print_i |
logical; whether to print the iteration |
save_SS |
logical; whether to save the sufficient statistics generated each iteration |
par_prior |
named list; parameters of the prior distributions |
list with the draws for the parameters, the log likelihood, acceptance rate and size of initial susceptible population
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.