cluster_expectationMaximization: A class to perform Expectation-Maximization clustering on...

View source: R/cluster_expectationMaximization.R

cluster_expectationMaximizationR Documentation

A class to perform Expectation-Maximization clustering on sequential data for Process Mining issues

Description

This class performs sequence clustering on an event-log with the Expectation-Maximization (EM) algorithm. The public methods are:

  • cluster_expectationMaximization( ) is the constructor of the class

  • loadDataset( ) loads data taken from a dataLoader::getData() method, into a cluster_expectationMaximization() object

  • calculateClusters( ) performs the actual clustering computation on the previously loaded dataset

  • getClusters( ) returns the clusters computed by the cluster_expectationMaximization::calculateClusters() method

  • getClusterStats( ) returns informations about the clustering result (i.e. support, between-cluster distance, within-cluster mean distance and standard deviation)

  • getClusterLog( ) returns informations about the clustering computation itself (i.e. iterations needed to converge, centroids value after each iteration)

In order to better undestand the use of such methods, please visit: www.pminer.info

Parameters for cluster_expectationMaximization::calculateClusters() method are:

  • num the number of clusters it has to generate

  • typeOfModel the name of the Process Mining model it has to use to generate the space (up to now, only the default "firstOrdermarkovModel" is provided)

Usage

cluster_expectationMaximization()

Examples

## Not run: 

# create a Loader
obj.L<-dataLoader();   # create a Loader

# Load a .csv using "DES" and "ID" as column names to indicate events
# and Patient's ID
obj.L$load.csv(nomeFile = "./otherFiles/test_02.csv",
IDName = "ID",EVENTName = "DES", dateColumnName = "DATA")

# now create an object cluster_expectationMaximization
obj.clEM<- cluster_expectationMaximization();

# load the data into logInspector object
obj.clEM$loadDataset( obj.L$getData() );

# perform clustering computation
obj.clEM$calculateClusters(num = 5, typeOfModel = "firstOrderMarkovModel");

# get calculated clusters 
a <- obj.clEM$getClusters();

# get informations about performance of clusters
b <- obj.clEM$getClusterStats();

# get log of each iteration of the algorithm
d <- obj.clEM$getClusterLog();

## End(Not run)

robertogattabs/pMiner.v045b documentation built on Aug. 2, 2022, 1:53 p.m.