mvnpdfC | R Documentation |
This is a concise description of what the function does.
mvnpdfC(x, mean, varcovM, Log = TRUE) timesTwo(x) mvnpdf(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE) mvnpdf_invC(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE) mvnpdfoptim(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE) mvnpdfoptim_par(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE) mvnpdfoptim_parIter( x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE, ncores = 1 ) mvnpdfsmart(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE)
x |
a p x n data matrix with n the number of observations and p the number of dimensions |
mean |
mean vector |
varcovM |
variance-covariance matrix |
Log |
logical flag for returning the log of the probability density
function. Default is |
ncores |
Number of cores used to run the code in parallel |
This part gives more details on the function.
a list containing the input matrix x and y the multivariate-Normal probability density function computed at x
mvnpdf(x=matrix(1.96), Log=FALSE) dnorm(1.96) mvnpdf(x=matrix(rep(1.96, 2), nrow=2, ncol=1), Log=FALSE) ## Not run: n <- 10000 mb <- microbenchmark::microbenchmark( mvtnorm::dmvnorm(matrix(1.96, nrow = n, ncol = 2)), mvnpdfsmart(x=matrix(1.96, nrow = 2, ncol = n), Log=FALSE), mvnpdfoptim_par(x=matrix(1.96, nrow = 2, ncol = n), Log=FALSE), times=10L) mb ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.