plot_terms | R Documentation |
For each non-parametric covariate the plot of the term includes confidence intervals and the decomposition in fixed and random part when the term is reparameterized as a mixed model.
plot_terms( fitterms, data, type = "global", alpha = 0.05, listw = NULL, dynamic = FALSE, nt = NULL, decomposition = FALSE )
fitterms |
object returned from |
data |
dataframe or sf with the data. |
type |
type of term plotted between "global" (Default), "fixed" or "random". |
alpha |
numerical value for the significance level of the pointwise confidence intervals of the nonlinear terms. Default 0.05. |
listw |
used to compute spatial lags for Durbin specifications. Default = 'NULL' |
dynamic |
Logical value to set a dynamic model. Dynamic models include a temporal lag of the dependent variable in the right-hand side of the equation. Default = 'FALSE'. |
nt |
Number of temporal periods. It is needed for dynamic models. |
decomposition |
Plot the decomposition of term in random and fixed effects. |
list with the plots of the terms for each non-parametric
covariate included in the object returned from fit_terms
.
Roman Minguez | roman.minguez@uclm.es |
Roberto Basile | roberto.basile@univaq.it |
Maria Durban | mdurban@est-econ.uc3m.es |
Gonzalo Espana-Heredia | gehllanza@gmail.com |
Wood, S.N. (2017). Generalized Additive Models.
An Introduction with R
(second edition). CRC Press, Boca Raton.
fit_terms
compute smooth functions for non-parametric
continuous covariates.
impactsnopar
plot the effects functions
of non-parametric covariates.
vis.gam
plot the terms fitted by
gam
function in mgcv package.
################################################ # Examples using spatial data of Ames Houses. ############################################### # Getting and preparing the data library(pspatreg) library(spdep) library(sf) ames <- AmesHousing::make_ames() # Raw Ames Housing Data ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude")) ames_sf$Longitude <- ames$Longitude ames_sf$Latitude <- ames$Latitude ames_sf$lnSale_Price <- log(ames_sf$Sale_Price) ames_sf$lnLot_Area <- log(ames_sf$Lot_Area) ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF+1) ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area) ########### Constructing the spatial weights matrix ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE), ] coord_sf1 <- cbind(ames_sf1$Longitude, ames_sf1$Latitude) ID <- row.names(as(ames_sf1, "sf")) col_tri_nb <- tri2nb(coord_sf1) soi_nb <- graph2nb(soi.graph(col_tri_nb, coord_sf1), row.names = ID) lw_ames <- nb2listw(soi_nb, style = "W", zero.policy = FALSE) form1 <- lnSale_Price ~ Fireplaces + Garage_Cars + pspl(lnLot_Area, nknots = 20) + pspl(lnTotal_Bsmt_SF, nknots = 20) + pspl(lnGr_Liv_Area, nknots = 20) gamsar <- pspatfit(form1, data = ames_sf1, type = "sar", listw = lw_ames, method = "Chebyshev") summary(gamsar) list_varnopar <- c("lnLot_Area", "lnTotal_Bsmt_SF", "lnGr_Liv_Area") terms_nopar <- fit_terms(gamsar, list_varnopar) ###################### Plot non-parametric terms plot_terms(terms_nopar, ames_sf1) ###### Examples using a panel data of rate of ###### unemployment for 103 Italian provinces in period 1996-2014. library(pspatreg) data(unemp_it, package = "pspatreg") lwsp_it <- spdep::mat2listw(Wsp_it) ######## No Spatial Trend: ps-sar including a spatial ######## lag of the dependent variable form1 <- unrate ~ partrate + agri + cons + pspl(serv,nknots = 15) + pspl(empgrowth,nknots = 20) gamsar <- pspatfit(form1, data = unemp_it, type = "sar", listw = Wsp_it) summary(gamsar) ######## Fit non-parametric terms (spatial trend must be name "spttrend") list_varnopar <- c("serv", "empgrowth") terms_nopar <- fit_terms(gamsar, list_varnopar) ####### Plot non-parametric terms plot_terms(terms_nopar, unemp_it)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.