Code
dplyr::filter(skimmed_iris, skim_type == "numeric")
Output
-- Data Summary ------------------------
Values
Name iris
Number of rows 150
Number of columns 5
_______________________
Column type frequency:
numeric 4
________________________
Group variables None
-- Variable type: numeric ------------------------------------------------------
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
1 Sepal.Length 0 1 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▆▇▇▅▂
2 Sepal.Width 0 1 3.06 0.436 2 2.8 3 3.3 4.4 ▁▆▇▂▁
3 Petal.Length 0 1 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▁▆▇▂
4 Petal.Width 0 1 1.20 0.762 0.1 0.3 1.3 1.8 2.5 ▇▁▇▅▃
Code
dplyr::filter(skimmed_iris, skim_type == "no_type")
Output
# A tibble: 0 x 15
# i 15 variables: skim_type <chr>, skim_variable <chr>, n_missing <int>,
# complete_rate <dbl>, factor.ordered <lgl>, factor.n_unique <int>,
# factor.top_counts <chr>, numeric.mean <dbl>, numeric.sd <dbl>,
# numeric.p0 <dbl>, numeric.p25 <dbl>, numeric.p50 <dbl>, numeric.p75 <dbl>,
# numeric.p100 <dbl>, numeric.hist <chr>
Code
with_type
Output
# A tibble: 5 x 2
skim_type skim_variable
<chr> <chr>
1 factor Species
2 numeric Sepal.Length
3 numeric Sepal.Width
4 numeric Petal.Length
5 numeric Petal.Width
Code
without_type
Output
# A tibble: 5 x 1
numeric.mean
<dbl>
1 NA
2 5.84
3 3.06
4 3.76
5 1.20
Code
input
Output
-- Data Summary ------------------------
Values
Name iris
Number of rows 150
Number of columns 5
_______________________
Column type frequency:
factor 1
numeric 4
________________________
Group variables None
-- Variable type: factor -------------------------------------------------------
skim_variable n_missing complete_rate ordered n_unique
1 Species 0 1 FALSE 3
top_counts
1 set: 50, ver: 50, vir: 50
-- Variable type: numeric ------------------------------------------------------
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
1 Sepal.Length 0 1 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▆▇▇▅▂
2 Sepal.Width 0 1 3.06 0.436 2 2.8 3 3.3 4.4 ▁▆▇▂▁
3 Petal.Length 0 1 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▁▆▇▂
4 Petal.Width 0 1 1.20 0.762 0.1 0.3 1.3 1.8 2.5 ▇▁▇▅▃
mean2
1 34.1
2 9.35
3 14.1
4 1.44
Code
input
Output
-- Data Summary ------------------------
Values
Name iris
Number of rows 150
Number of columns 5
_______________________
Column type frequency:
factor 1
numeric 2
________________________
Group variables None
-- Variable type: factor -------------------------------------------------------
skim_variable n_missing complete_rate ordered n_unique
1 Species 0 1 FALSE 3
top_counts
1 set: 50, ver: 50, vir: 50
-- Variable type: numeric ------------------------------------------------------
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
1 Sepal.Length 0 1 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▆▇▇▅▂
2 Sepal.Width 0 1 3.06 0.436 2 2.8 3 3.3 4.4 ▁▆▇▂▁
Code
dplyr::arrange(skimmed_iris, desc(numeric.mean))
Output
-- Data Summary ------------------------
Values
Name iris
Number of rows 150
Number of columns 5
_______________________
Column type frequency:
factor 1
numeric 4
________________________
Group variables None
-- Variable type: factor -------------------------------------------------------
skim_variable n_missing complete_rate ordered n_unique
1 Species 0 1 FALSE 3
top_counts
1 set: 50, ver: 50, vir: 50
-- Variable type: numeric ------------------------------------------------------
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
1 Sepal.Length 0 1 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▆▇▇▅▂
2 Petal.Length 0 1 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▁▆▇▂
3 Sepal.Width 0 1 3.06 0.436 2 2.8 3 3.3 4.4 ▁▆▇▂▁
4 Petal.Width 0 1 1.20 0.762 0.1 0.3 1.3 1.8 2.5 ▇▁▇▅▃
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.