hyperparameter_tuning: hyperparameter_tuning

Description Usage Arguments Details Value

View source: R/hyperparameter_tuning.R

Description

Finds the best set of xgboost parameters for each topic using random search.

Usage

1
2
3
4
5
6
7
8
hyperparameter_tuning(
  train_labelled_dtm,
  valid_labelled_dtm,
  train_labels,
  val_labels,
  topics,
  num_its = 1000
)

Arguments

train_labelled_dtm

Training labelled document-term matrix.

valid_labelled_dtm

Validation labelled document-term matrix.

train_labels

Training labels matrix.

val_labels

Validation labels matrix.

topics

List of topics.

num_its

Number of iterations to run for each topic. Default: 1000

Details

Parameters:

Value

A dataframe with columns representing parameters and rows representing an optimal parameter set for each topic.


rosepeglershare/TagR documentation built on Dec. 31, 2020, 3:12 a.m.