cal_Ts: Evaporative surface temperature

View source: R/cal_Ts.R

cal_TsR Documentation

Evaporative surface temperature

Description

Evaporative surface temperature (land surface, Tland; or leaf surface Tleaf). Land surface temperature infered by Monteith 1965 Equation.

Usage

cal_Ts(
  Rn,
  Tair,
  D,
  U2,
  Pa = atm,
  rH = NULL,
  rs = 0,
  method = c("simple", "full", "ma2021"),
  ...
)

Arguments

Rn

land surface net radiation, W m-2

Tair

2m air temperature (degC)

D

vapor pressure deficit (kPa)

U2

wind speed at 2m

Pa

surface air pressure (kPa)

rH

conductance for heat

rs

If rs = 0, Monteith 1965 leaf evaporation Equation becomes Penman 1948 water evaporation. ignore the influence of Ts on net cal_radiation

method
  • simple: Monteith 1965 Equation

  • full (not finished): Yang 2019

  • ma2021: Ma 2021

...

ignored

Details

  • rH: aerodynamic resistance of heat

  • rs: stamotal resistance of water

References

  1. Monteith, J. P. (1965). An introduction to environmental physics.

  2. Yang, Y., & Roderick, M. L. (2019). Radiation, surface temperature and evaporation over wet surfaces. Quarterly Journal of the Royal Meteorological Society, 145(720), 1118–1129. https://doi.org/10.1002/qj.3481

  3. Ma, N., Szilagyi, J., & Zhang, Y. (2021). Calibration-Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resources Research, 57(9), 1–27. https://doi.org/10.1029/2021WR029691

Examples

library(dplyr)
# The relationship of Rn, Ts
Rn = 0:200
cal_Ts(Rn, 25, D = 1, U2 = 2)
cal_Ts(200, 25, D = 1, U2 = 2)
# plot(Rn, dat$Ts, type = "l", main = "(a) Ts ~ Rn")
# plot(Rn, dat$Eeq, type = "l", main = "(b) Eeq ~ Rn")
# # plot(Rn, dat$Evp, type = "l") # a constant value
# dat %<>% mutate(Rn = Rn, bowen = ET0 / (Rn * 0.086400 / lambda - ET0))
# plot(bowen ~ Rn, dat, type = "l", main = "(b) Eeq ~ Rn")

rpkgs/hydroTools documentation built on Oct. 8, 2024, 7:47 p.m.