cal_Ts | R Documentation |
Evaporative surface temperature (land surface, Tland; or leaf surface Tleaf). Land surface temperature infered by Monteith 1965 Equation.
cal_Ts(
Rn,
Tair,
D,
U2,
Pa = atm,
rH = NULL,
rs = 0,
method = c("simple", "full", "ma2021"),
...
)
Rn |
land surface net radiation, W m-2 |
Tair |
2m air temperature (degC) |
D |
vapor pressure deficit (kPa) |
U2 |
wind speed at 2m |
Pa |
surface air pressure (kPa) |
rH |
conductance for heat |
rs |
If |
method |
|
... |
ignored |
rH
: aerodynamic resistance of heat
rs
: stamotal resistance of water
Monteith, J. P. (1965). An introduction to environmental physics.
Yang, Y., & Roderick, M. L. (2019). Radiation, surface temperature and evaporation over wet surfaces. Quarterly Journal of the Royal Meteorological Society, 145(720), 1118–1129. https://doi.org/10.1002/qj.3481
Ma, N., Szilagyi, J., & Zhang, Y. (2021). Calibration-Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resources Research, 57(9), 1–27. https://doi.org/10.1029/2021WR029691
library(dplyr)
# The relationship of Rn, Ts
Rn = 0:200
cal_Ts(Rn, 25, D = 1, U2 = 2)
cal_Ts(200, 25, D = 1, U2 = 2)
# plot(Rn, dat$Ts, type = "l", main = "(a) Ts ~ Rn")
# plot(Rn, dat$Eeq, type = "l", main = "(b) Eeq ~ Rn")
# # plot(Rn, dat$Evp, type = "l") # a constant value
# dat %<>% mutate(Rn = Rn, bowen = ET0 / (Rn * 0.086400 / lambda - ET0))
# plot(bowen ~ Rn, dat, type = "l", main = "(b) Eeq ~ Rn")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.