5个站点没有LAI数据, 通过
lai&GPP
R2最大,将其位置调整到相邻网格2024-03-22, Dongdong Kong https://code.earthengine.google.com/d2c78bba5034f692f114ee64b0fb05c7
library(sf) library(sf2) library(tidyr) library(Ipaper) library(dplyr) library(lubridate) library(hydroTools) st2 = read_sf("./data-raw/st212_adjust_5points_loc/shp/flux_st5_adjusted.shp") |> st_cast("POINT") |> as.data.table() st2[, group := as.character(1:.N), .(site)] # 来源于下面的评估结果 info = tribble( ~site, ~group, "DE-Akm", "1", "DE-RuS", "3", "IT-Ro1", "2", "US-ORv", "1", "US-WPT", "2" ) # st2用于修正站点位置信息 st2 = merge(info, st2) |> cbind("source"="fluxnet2015")
sites_bad <- c("US-WPT", "US-ORv", "DE-Akm", "DE-RuS", "IT-Ro1") df_d8 = fread("Z:/Researches/PMLV2/rfluxnet.R/OUTPUT/fluxsites212_FULLSET_D8_v20240322 (80%).csv") df <- df_d8[site %in% sites_bad, .(site, date, NEE, GPP_NT, GPP_DT)] indir = "data-raw/st212_adjust_5points_loc/LAI_csv_temp" f = glue("{indir}/st5_fix_LAI_2000-2023_MODIS_061_MOD15A2H.csv") df_lai <- fread(f) |> separate(site2, into = c("site", "group"), sep = "_") |> data.table() |> mutate(date = as_date(date)) %>% # add_dn() |> # mutate(date2 = date_ydn(year, d8)) %>% .[, .(site, group, date, FparExtra_QC, LAI = Lai_500m)] d = merge(df_lai, df) info = d[, GOF(LAI, GPP_NT), .(site, group)] info[, .SD[which.max(R2), .(group, R, R2, pvalue)], .(site)] info <- d[, GOF(LAI, NEE), .(site, group)] info[, .SD[which.max(R2), .(group, R, R2, pvalue)], .(site)]
湿地
LAI&NEE
为何是负相关?LAI&GPP
是正相关,而且相关系数极高
# 最终挑选的站点, NEE merge(df_lai, info) |> select(-group) |> unique() # site group R R2 pvalue # <chr> <chr> <dbl> <dbl> <dbl> # 1 DE-Akm 1 -0.505 0.255 2.65e-19 # 2 DE-RuS 3 -0.494 0.244 9.86e-13 # 3 IT-Ro1 2 -0.629 0.396 4.77e-46 # 4 US-ORv 1 -0.783 0.613 1.27e-10 # 5 US-WPT 2 -0.681 0.463 4.08e-20
重新制作一个st_flux212
st_plumber170
: 可补充49个站点
st = rbind( st_plumber170[site %!in% st_flux212$site, .(site, lon, lat, source = "plumber2")], st_flux212[, .(site, lon, lat, source = "fluxnet2015")] ) # IT-Ro1: both st_flux261 = rbind( st[site %!in% sites_bad, ], select(st2, -group)) |> arrange(site) st[site %in% sites_bad, ] st_flux261[site %in% sites_bad, ] usethis::use_data(st_flux261, overwrite=TRUE) # 5个站点的位置需要调整
已经对站点位置进行了修正, 但修正代码丢失
# 补充冠层高度信息 sites = st_flux261$site st = site_metadata[SiteCode %in% sites, .(site = SiteCode, z_obs = MeasurementHeight, z_canopy = CanopyHeight, z_tower = TowerHeight, IGBP_vegetation_short, IGBP_vegetation_long, CABLE_PFT, Exclude, Exclude_reason )] st[!is.na(z_obs)] st2[!is.na(z_obs)] # 217站点有 st2[!is.na(z_canopy)] # 217站点有 sites_good = st_plumber170$site st2 = rbind( st[site %!in% sites_good, .(site, z_obs, z_canopy)], st_plumber170[, .(site, z_obs, z_canopy)] )
meta = fread("data-raw/Site_metadata.csv") # st = site_metadata[SiteCode %in% sites, .(site = SiteCode, # z_obs = MeasurementHeight, # z_canopy = CanopyHeight, # z_tower = TowerHeight, # IGBP_vegetation_short, IGBP_vegetation_long, # CABLE_PFT, # Exclude, # Exclude_reason # )] # st[!is.na(z_obs)]
冠层高度信息不全
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.