dp | R Documentation |
This function calls C code for a bare-bones dynamic programming algorithm, finding the best cost path through a similarity matrix.
dp(M, gap = 0.5, big = 1e+10, verbose = FALSE)
M |
similarity matrix |
gap |
penalty for gaps |
big |
large value used for matrix margins |
verbose |
logical, whether to print out information |
This is a pretty standard implementation of a bare-bones dynamic programming algorithm, with a single gap parameter and allowing only simple jumps through the matrix (up, right or diagonal).
list
with element match
with the set of pairwise matches.
Mark Robinson
Mark D Robinson (2008). Methods for the analysis of gas chromatography - mass spectrometry data PhD dissertation University of Melbourne.
normDotProduct
require(gcspikelite) # paths and files gcmsPath<-paste(find.package("gcspikelite"),"data",sep="/") cdfFiles<-dir(gcmsPath,"CDF",full=TRUE) eluFiles<-dir(gcmsPath,"ELU",full=TRUE) # read data, peak detection results pd<-peaksDataset(cdfFiles[1:2],mz=seq(50,550),rtrange=c(7.5,8.5)) pd<-addAMDISPeaks(pd,eluFiles[1:2]) # similarity matrix r<-normDotProduct(pd@peaksdata[[1]],pd@peaksdata[[2]]) # dynamic-programming-based matching of peaks v<-dp(r,gap=.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.