knitr::opts_chunk$set(echo = TRUE)
library(mytestpkg)
Use new functions:
1.
a <- c(5,3,9,5) b <- c(4,6,7,3) new_fun(a,b)
Create Table \@ref(fig:table) [after @schauer1968wirkungsspezifitat]:
tab <- matrix(c(3,5,8,3,5,3,6,4), ncol=2) colnames(tab) <- c("a","b") rownames(tab) <- c("test1", "test2", "test3", "test4") knitr::kable(head(tab), caption = "My new table")
Create Plot \@ref(fig:tableplot) :
plot(tab)
For help check @Hijmans2016
library(binford) data(LRB) knitr::kable(head(LRB))
##------------------------ ## First Order effects ##------------------------ harran <- read.table("../data/ReReLA/data/Sites_HarranPlain.csv", sep=",", header=TRUE) head(harran) ## Create Spatial Object ##-------------------------- library(sp) coordinates(harran) <- ~X+Y proj4string(harran) <- CRS("+init=epsg:4326") harran <- spTransform(harran, CRSobj = CRS("+init=epsg:32637")) ## Create Point pattern object ##------------------------------ library(spatstat) harran_ppp <- ppp(x = harran@coords[,1], y = harran@coords[,2], window = owin(xrange = harran@bbox[1,], yrange = c(min(harran@bbox[2,]), min(harran@coords[,2]+52000))) ) # remove duplicated points str(harran_ppp) harran_ppp2 <- harran_ppp[!duplicated(harran_ppp)] str(harran_ppp2) plot(harran_ppp2) # or: anyDuplicated(harran_ppp) harran_ppp3 <- unique(harran_ppp) harran_ppp_nn <- nndist(harran_ppp2) str(harran_ppp_nn) hist(harran_ppp_nn) ## Kernel Density Estimation ##----------------------------- kde <- density.ppp(x=harran_ppp2, sigma = mean(harran_ppp_nn)) plot(kde) # use another bandwidth (sigma) # for clustered data use diggle bw.ppl(harran_ppp2) bw.diggle(harran_ppp2) plot(bw.ppl(harran_ppp2)) plot(bw.ppl(harran_ppp2), xlim=c(2000,5000)) ## Add a Covariate ##--------------------------- # load raster library(raster) dem <- raster("../data/ReReLA/data/dem_harran.tif") # convert raster to pixel image t <- as(dem, "SpatialGridDataFrame") im.dem <- as.im(as.image.SpatialGridDataFrame(as(dem, "SpatialGridDataFrame"))) harran_rhohat <-rhohat(object = harran_ppp2, covariate = im.dem, bw = mean(harran_ppp_nn)) # window of points matters plot(harran_rhohat) # y-axis: intensity of points # check bandwidth (sigma): str(harran_rhohat) # Predict rho_dem <- predict(harran_rhohat) plot(rho_dem) # Compare raster with real data with predicted raster diff_rho <- kde - rho_dem plot(raster(diff_rho)) ## Test against random poisson process ## ------------------------------------- # create random points with the same density like the real points # compute density - Points per area dens1 <- harran_ppp2$n/area.owin(harran_ppp2$window) #set.seed(123) harran_poispp1 <- rpoispp(lambda = dens1, win = harran_ppp2$window) # poisson - complete spatial randomness ## or /error dens2 <- intensity(harran_ppp2) #set.seed(123) harran_poispp2 <- rpoispp(lambda = dens2, win = harran_ppp2$window) ## or: #set.seed(123) harran_poispp3 <- (ex = harran_ppp) plot(harran_ppp2) points(harran_poispp1, col="red") points(harran_poispp2, col="blue") points(harran_poispp3, col="green") ##------------------------- ## Second order effects ##------------------------ # G-Function harran_g <- Gest(harran_ppp2) str(harran_g) plot(harran_g) # generate 99 random points and run G-Function harran_ge <- envelope(harran_ppp2, fun="Gest") plot(harran_ge) # greyish curve - result of all 99 cases - becomes wider with more simulations harran_ge1000 <- envelope(harran_ppp2, fun="Gest", nsim=1000) plot(harran_ge1000) # F-Function harran_f <- Fest(harran_ppp2) str(harran_f) plot(harran_f) harran_fe1000 <- envelope(harran_ppp2, fun="Fest", nsim=1000) plot(harran_fe1000) # K-Function harran_k <- Kest(harran_ppp2) str(harran_k) plot(harran_k) harran_ke1000 <- envelope(harran_ppp2, fun="Kest", nsim=1000) plot(harran_ke1000) # Inhomogeneous G/F/K: harran_gi <- Ginhom(harran_ppp2, lambda=predict(harran_rhohat)) par(mfrow=c(1,2)) plot(harran_gi, xlim=c(0,500)) plot(harran_g, xlim=c(0,500)) #Finhom() #Kinhom()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.