#' Find evolutionary singularities
#'
#' Finds trait values for which the selection gradient is zero.
#'
#' @param from,to The bounds of the range of trait values to explore
#' @param pars An unevaluated parameter-list (e.g. as returned by
#' \code{get_default_pars})
#' @param init A vector of two starting values for solving of the demographic
#' equilibrium
#' @param ... Additional arguments to be passed to \code{find_roots}
#'
#' @details This function uses a numerical root finding algorithm to find the
#' roots of the fitness gradient within a range of trait values
#'
#' @return A vector of singularities (the output of \code{find_roots})
#'
#' @seealso \code{get_gradient}, \code{find_roots}
#'
#' @examples
#'
#' pars <- get_default_pars()
#' find_singularities(-1, 1, pars, init = rep(1000, 2))
#'
#' @export
# Function to find the roots of the selection gradient
find_singularities <- function(from, to, pars, init, ...) {
# Equation for which to find the root(s)
f <- function(x) get_gradient(x, pars, init)
# Find the roots of the selection gradient
find_roots(f, from, to, ...)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.