knitr::opts_chunk$set(echo = TRUE, message = F, warning = F, fig.width = 13, fig.height = 6, comment = "")
library(tidyverse) library(lubridate) library(e1071) library(gridExtra) library(janitor) library(data.table) library(funModeling) library(kableExtra) library(htmltools) library(ISOweek)
# Dataset of Sales df_sales_raw <- data.table::fread("/home/renato/repos/Rossmann/inst/Data/train.csv", stringsAsFactors = T, na.strings = c("","'","NA")) # Dataset of Stores df_store_raw <- data.table::fread("/home/renato/repos/Rossmann/inst/Data/store.csv", stringsAsFactors = T, na.strings=c("","'","NA")) # merge df_raw <- merge(df_sales_raw, df_store_raw, by= "Store")
#making a copy of the dataset df_raw df1 <- df_raw %>% clean_names() rmarkdown::paged_table(head(df1))
print(paste("Number of Rows: " ,nrow(df_raw))) print(paste("Number of Cols: " ,ncol(df_raw)))
# converting the "date" feature to datetime df1$date <- ymd(df1$date) glimpse(df1)
colSums(is.na(df1))
# removing missing values df1 <- df1 %>% mutate( # replace the missing values with the value of 200000 competition_distance = ifelse(is.na(competition_distance), 200000, competition_distance), # replace the missing values with the month in the date column competition_open_since_month = ifelse(is.na(competition_open_since_month), month(date), competition_open_since_month), # replace the missing values with the year in the date column competition_open_since_year = ifelse(is.na(competition_open_since_year), year(date), competition_open_since_year), # replace the missing values with the week in the date column promo2since_week = ifelse(is.na(promo2since_week ), week(date), promo2since_week ), # replace the missing values with the year in the date column promo2since_year = ifelse(is.na(promo2since_year), year(date), promo2since_year), month_map = month(date), month_map = month.abb[month_map]) # removing the blanks df1$promo_interval <- str_squish(df1$promo_interval) # replacing missing values with 0 df1$promo_interval[df1$promo_interval==""] = "0" # creating a column with the months that the promotion is active with value 1 and not active with value 0 df1 <- df1 %>% mutate(is_promo = ifelse(promo_interval == "0",0,ifelse(str_detect(promo_interval, month_map),1,0))) # viewing a random sample of the data kable(t(df1[sample(nrow(df1), 5), ])) %>% kable_styling(full_width = F, bootstrap_options = c("striped", "hover", "condesend", "responsive"),html_font = "Cambria")
df1 <- df1 %>% mutate(competition_distance = as.integer(competition_distance), month_map = as.factor(month_map))
# selecting only numeric features num_attributes <- df1 %>% keep(is.numeric) # selecting only categorical features cat_attributes <- df1 %>% keep(is.factor)
# Central Tendency - mean , median num_mean <- as.data.frame( t(lapply(num_attributes, mean))) num_median <- as.data.frame( t(lapply(num_attributes, median))) # dispersion - std, min, max, range, skew, kurtosis num_std <- as.data.frame( t(lapply(num_attributes, sd))) num_min <- as.data.frame( t(lapply(num_attributes, min))) num_max <- as.data.frame( t(lapply(num_attributes, max))) num_skew <- as.data.frame( t(lapply(num_attributes, skewness))) num_kurt <- as.data.frame( t(lapply(num_attributes, kurtosis))) table_desc <- t(bind_rows(num_min,num_max,num_mean,num_median,num_std,num_skew,num_kurt)) table_desc<- as.data.frame(table_desc) names(table_desc) <- c("min","max","mean","median","std","skew", "kurtosis") kable(table_desc, digits = 4) %>% kable_styling(full_width = F, bootstrap_options = c("striped", "hover", "condesend", "responsive"),html_font = "Cambria")
df1 %>% ggplot(aes(sales))+ geom_histogram(aes(y =..density..),col="black", fill="steelblue")+ stat_function(fun = dnorm, args = list(mean = mean(df1$sales), sd = sd(df1$sales)), col="red", lwd=1)
apply(cat_attributes, 2, function(x) length(unique(x)))
boxplot_01 <- df1 %>% filter(state_holiday != 0 & sales > 0 ) %>% ggplot(aes(x = state_holiday, y = sales, fill=state_holiday))+ scale_y_continuous(breaks = seq(0,40000,5000))+ geom_boxplot() boxplot_02 <- df1 %>% filter(state_holiday != 0 & sales > 0 ) %>% ggplot(aes(x = store_type, y = sales, fill=store_type))+ scale_y_continuous(breaks = seq(0,40000,5000))+ geom_boxplot() boxplot_03 <- df1 %>% filter(state_holiday != 0 & sales > 0 ) %>% ggplot(aes(x = assortment, y = sales, fill=assortment))+ scale_y_continuous(breaks = seq(0,40000,5000))+ geom_boxplot() grid.arrange(boxplot_01,boxplot_02,boxplot_03,nrow= 2,ncol=2)
df2 <- df1
knitr::include_graphics("/home/renato/repos/Rossmann/inst/img/MindMapsHypothesis.png")
1. Lojas com número maior de funcionários deveriam vender mais.
1. Stores with more employees should sell more.
2. Lojas com maior capacidade de estoque deveriam vender mais.
2. Stores with greater inventory capacity should sell more.
3. Lojas com maior porte deveriam vender mais.
3. Larger stores should sell more.
4. Lojas com maior sortimentos deveriam vender mais.
4. Stores with larger assortments should sell more.
5. Lojas com competidores mais próximos deveriam vender menos.
5. Stores with closer competitors should sell less.
6. Lojas com competidores à mais tempo deveriam vendem mais.
6. Stores with longer competitors should sell more.
1. Lojas que investem mais em Marketing deveriam vender mais.
1. Stores that invest more in Marketing should sell more.
2. Lojas com maior exposição de produto deveriam vender mais.
2. Stores with greater product exposure should sell more.
3. Lojas com produtos com preço menor deveriam vender mais.
3. Stores with lower priced products should sell more.
4. Lojas com promoções mais agressivas ( descontos maiores ), deveriam vender mais.
4. Stores with more aggressive promotions (bigger discounts), should sell more.
5. Lojas com promoções ativas por mais tempo deveriam vender mais.
5. Stores with active promotions for longer should sell more.
6. Lojas com mais dias de promoção deveriam vender mais.
6. Stores with more promotion days should sell more.
7. Lojas com mais promoções consecutivas deveriam vender mais.
7. Stores with more consecutive promotions should sell more.
1. Lojas abertas durante o feriado de Natal deveriam vender mais.
1. Stores open during the Christmas holiday should sell more.
2. Lojas deveriam vender mais ao longo dos anos.
2. Stores should sell more over the years.
3. Lojas deveriam vender mais no segundo semestre do ano.
3. Stores should sell more in the second half of the year.
4. Lojas deveriam vender mais depois do dia 10 de cada mês.
4. Stores should sell more after the 10th of each month.
5. Lojas deveriam vender menos aos finais de semana.
5. Stores should sell less on weekends.
6. Lojas deveriam vender menos durante os feriados escolares.
6. Stores should sell less during school holidays.
1. Lojas com maior sortimentos deveriam vender mais.
1. Stores with larger assortments should sell more.
2. Lojas com competidores mais próximos deveriam vender menos.
2. Stores with closer competitors should sell less.
3. Lojas com competidores à mais tempo deveriam vendem mais.
3. Stores with longer competitors should sell more.
4. Lojas com promoções ativas por mais tempo deveriam vender mais.
4. Stores with active promotions for longer should sell more.
5. Lojas com mais dias de promoção deveriam vender mais.
5. Stores with more promotion days should sell more.
6. Lojas com mais promoções consecutivas deveriam vender mais.
6. Stores with more consecutive promotions should sell more.
7. Lojas abertas durante o feriado de Natal deveriam vender mais.
7. Stores open during the Christmas holiday should sell more.
8. Lojas deveriam vender mais ao longo dos anos.
8. Stores should sell more over the years.
9. Lojas deveriam vender mais no segundo semestre do ano.
9. Stores should sell more in the second half of the year.
10. Lojas deveriam vender mais depois do dia 10 de cada mês.
10. Stores should sell more after the 10th of each month.
11. Lojas deveriam vender menos aos finais de semana.
11. Stores should sell less on weekends.
12. Lojas deveriam vender menos durante os feriados escolares.
12. Stores should sell less during school holidays.
df2 <- df2 %>% mutate( # Extracting year year = as.integer(year(date)), # Extracting month month = month(date), # Extracting day day = day(date), #Extracting week of the year week_of_year = week(date), # Extracting year and week year_week = strftime(date, format = "%Y-%W"), # Extracting first day of the month first_day_of_month = "01", # Turning into Date competition_since = make_date(competition_open_since_year, competition_open_since_month,first_day_of_month), # Getting the difference in days competition_time_month = as.integer(difftime(date, competition_since, units = "days")/30) ) # this is function to convert year-week to year-month-day data_da_semana <- function(ano, semana, diadasemana){ w <- paste0(ano, "-W", sprintf("%02d", semana), "-", diadasemana) ISOweek2date(w)-1 } df2 <- df2 %>% mutate( # convert year-week to year-month-day promo_since = data_da_semana(promo2since_year, promo2since_week, 1), # Getting the difference in days promo_time_week = difftime(date, promo_since, units = "days")/7, # converting to integer promo_time_week = as.integer(promo_time_week), assortment = case_when( # changing from a to basic assortment == "a" ~ "basic", # changing from b to extra assortment == "b" ~ "extra", # everything else for extended T ~ "extended"), state_holiday = case_when( # changing from a to public_holiday state_holiday == "a" ~ "public_holiday", # changing from b to easter_holiday state_holiday == "b" ~ "easter_holiday", # changing from b to christmas state_holiday == "c" ~ "christmas", # everything else for regular_day T ~ "regular_day"))
df3 <- df2
# Removing the records of the days the stores are closed and thus obtaining only sales with values> 0 df3 <- df3 %>% filter(open != 0 & sales > 0)
# Removing features that were not available at the time of production and will not be needed. df3 <- df3 %>% select(-customers, -open, -promo_interval, -month_map)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.