Code
ols_step_best_subset(model)
Output
Best Subsets Regression
------------------------------
Model Index Predictors
------------------------------
1 wt
2 hp wt
3 hp wt qsec
4 disp hp wt qsec
------------------------------
Subsets Regression Summary
---------------------------------------------------------------------------------------------------------------------------------
Adj. Pred
Model R-Square R-Square R-Square C(p) AIC SBIC SBC MSEP FPE HSP APC
---------------------------------------------------------------------------------------------------------------------------------
1 0.7528 0.7446 0.7087 12.4809 166.0294 74.2916 170.4266 296.9167 9.8572 0.3199 0.2801
2 0.8268 0.8148 0.7811 2.3690 156.6523 66.5755 162.5153 215.5104 7.3563 0.2402 0.2091
3 0.8348 0.8171 0.782 3.0617 157.1426 67.7238 164.4713 213.1929 7.4756 0.2461 0.2124
4 0.8351 0.8107 0.771 5.0000 159.0696 70.0408 167.8640 220.8882 7.9497 0.2644 0.2259
---------------------------------------------------------------------------------------------------------------------------------
AIC: Akaike Information Criteria
SBIC: Sawa's Bayesian Information Criteria
SBC: Schwarz Bayesian Criteria
MSEP: Estimated error of prediction, assuming multivariate normality
FPE: Final Prediction Error
HSP: Hocking's Sp
APC: Amemiya Prediction Criteria
Code
ols_step_best_subset(model, metric = "aic")
Output
Best Subsets Regression
------------------------------
Model Index Predictors
------------------------------
1 wt
2 hp wt
3 hp wt qsec
4 disp hp wt qsec
------------------------------
Subsets Regression Summary
---------------------------------------------------------------------------------------------------------------------------------
Adj. Pred
Model R-Square R-Square R-Square C(p) AIC SBIC SBC MSEP FPE HSP APC
---------------------------------------------------------------------------------------------------------------------------------
1 0.7528 0.7446 0.7087 12.4809 166.0294 74.2916 170.4266 296.9167 9.8572 0.3199 0.2801
2 0.8268 0.8148 0.7811 2.3690 156.6523 66.5755 162.5153 215.5104 7.3563 0.2402 0.2091
3 0.8348 0.8171 0.782 3.0617 157.1426 67.7238 164.4713 213.1929 7.4756 0.2461 0.2124
4 0.8351 0.8107 0.771 5.0000 159.0696 70.0408 167.8640 220.8882 7.9497 0.2644 0.2259
---------------------------------------------------------------------------------------------------------------------------------
AIC: Akaike Information Criteria
SBIC: Sawa's Bayesian Information Criteria
SBC: Schwarz Bayesian Criteria
MSEP: Estimated error of prediction, assuming multivariate normality
FPE: Final Prediction Error
HSP: Hocking's Sp
APC: Amemiya Prediction Criteria
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.