Code
ols_regress(mpg ~ disp + hp + wt, data = mtcars)
Output
Model Summary
---------------------------------------------------------------
R 0.909 RMSE 2.468
R-Squared 0.827 MSE 6.093
Adj. R-Squared 0.808 Coef. Var 13.135
Pred R-Squared 0.768 AIC 158.643
MAE 1.907 SBC 165.972
---------------------------------------------------------------
RMSE: Root Mean Square Error
MSE: Mean Square Error
MAE: Mean Absolute Error
AIC: Akaike Information Criteria
SBC: Schwarz Bayesian Criteria
ANOVA
--------------------------------------------------------------------
Sum of
Squares DF Mean Square F Sig.
--------------------------------------------------------------------
Regression 931.057 3 310.352 44.566 0.0000
Residual 194.991 28 6.964
Total 1126.047 31
--------------------------------------------------------------------
Parameter Estimates
----------------------------------------------------------------------------------------
model Beta Std. Error Std. Beta t Sig lower upper
----------------------------------------------------------------------------------------
(Intercept) 37.106 2.111 17.579 0.000 32.782 41.429
disp -0.001 0.010 -0.019 -0.091 0.929 -0.022 0.020
hp -0.031 0.011 -0.354 -2.724 0.011 -0.055 -0.008
wt -3.801 1.066 -0.617 -3.565 0.001 -5.985 -1.617
----------------------------------------------------------------------------------------
Code
ols_regress(lm(mpg ~ disp + hp + wt, data = mtcars))
Output
Model Summary
---------------------------------------------------------------
R 0.909 RMSE 2.468
R-Squared 0.827 MSE 6.093
Adj. R-Squared 0.808 Coef. Var 13.135
Pred R-Squared 0.768 AIC 158.643
MAE 1.907 SBC 165.972
---------------------------------------------------------------
RMSE: Root Mean Square Error
MSE: Mean Square Error
MAE: Mean Absolute Error
AIC: Akaike Information Criteria
SBC: Schwarz Bayesian Criteria
ANOVA
--------------------------------------------------------------------
Sum of
Squares DF Mean Square F Sig.
--------------------------------------------------------------------
Regression 931.057 3 310.352 44.566 0.0000
Residual 194.991 28 6.964
Total 1126.047 31
--------------------------------------------------------------------
Parameter Estimates
----------------------------------------------------------------------------------------
model Beta Std. Error Std. Beta t Sig lower upper
----------------------------------------------------------------------------------------
(Intercept) 37.106 2.111 17.579 0.000 32.782 41.429
disp -0.001 0.010 -0.019 -0.091 0.929 -0.022 0.020
hp -0.031 0.011 -0.354 -2.724 0.011 -0.055 -0.008
wt -3.801 1.066 -0.617 -3.565 0.001 -5.985 -1.617
----------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.