layer_pipeline | R Documentation |
This class is useful to build a preprocessing pipeline,
in particular an image data augmentation pipeline.
Compared to a Sequential
model, Pipeline
features
a few important differences:
It's not a Model
, just a plain layer.
When the layers in the pipeline are compatible
with tf.data
, the pipeline will also
remain tf.data
compatible. That is to say,
the pipeline will not attempt to convert
its inputs to backend-native tensors
when in a tf.data context (unlike a Sequential
model).
layer_pipeline(layers, name = NULL)
layers |
A list of layers. |
name |
String, name for the object |
preprocessing_pipeline <- layer_pipeline(c( layer_auto_contrast(, ), layer_random_zoom(, 0.2), layer_random_rotation(, 0.2) )) # `ds` is a tf.data.Dataset of images ds <- tfdatasets::tensor_slices_dataset(1:100) |> tfdatasets::dataset_map(\(.x) { random_normal(c(28, 28)) }) |> tfdatasets::dataset_batch(32) #|> # tfdatasets::dataset_take(4) |> # iterate() |> str() preprocessed_ds <- ds |> tfdatasets::dataset_map(preprocessing_pipeline, num_parallel_calls = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.