layer_stft_spectrogram: Layer to compute the Short-Time Fourier Transform (STFT) on a...

layer_stft_spectrogramR Documentation

Layer to compute the Short-Time Fourier Transform (STFT) on a 1D signal.

Description

A layer that computes Spectrograms of the input signal to produce a spectrogram. This layers by The layer computes Spectrograms based on Short-Time Fourier Transform (STFT) by utilizing convolution kernels, which allows parallelization on GPUs and trainable kernels for fine-tuning support. This layer allows different modes of output (e.g., log-scaled magnitude, phase, power spectral density, etc.) and provides flexibility in windowing, padding, and scaling options for the STFT calculation.

Usage

layer_stft_spectrogram(
  object,
  mode = "log",
  frame_length = 256L,
  frame_step = NULL,
  fft_length = NULL,
  window = "hann",
  periodic = FALSE,
  scaling = "density",
  padding = "valid",
  expand_dims = FALSE,
  data_format = NULL,
  ...
)

Arguments

object

Object to compose the layer with. A tensor, array, or sequential model.

mode

String, the output type of the spectrogram. Can be one of "log", ⁠"magnitude⁠", "psd", ⁠"real⁠", ⁠"imag⁠", ⁠"angle⁠", ⁠"stft⁠". Defaults to ⁠"log⁠".

frame_length

Integer, The length of each frame (window) for STFT in samples. Defaults to 256.

frame_step

Integer, the step size (hop length) between consecutive frames. If not provided, defaults to half the frame_length. Defaults to frame_length %/% 2.

fft_length

Integer, the size of frequency bins used in the Fast-Fourier Transform (FFT) to apply to each frame. Should be greater than or equal to frame_length. Recommended to be a power of two. Defaults to the smallest power of two that is greater than or equal to frame_length.

window

(String or array_like), the windowing function to apply to each frame. Can be ⁠"hann⁠" (default), ⁠"hamming⁠", or a custom window provided as an array_like.

periodic

Boolean, if TRUE, the window function will be treated as periodic. Defaults to FALSE.

scaling

String, type of scaling applied to the window. Can be ⁠"density⁠", ⁠"spectrum⁠", or None. Default is ⁠"density⁠".

padding

String, padding strategy. Can be ⁠"valid⁠" or ⁠"same⁠". Defaults to "valid".

expand_dims

Boolean, if TRUE, will expand the output into spectrograms into two dimensions to be compatible with image models. Defaults to FALSE.

data_format

String, either "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape ⁠(batch, height, width, channels)⁠ while "channels_first" corresponds to inputs with shape ⁠(batch, channels, height, weight)⁠. Defaults to "channels_last".

...

For forward/backward compatability.

Value

The return value depends on the value provided for the first argument. If object is:

  • a keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.

  • a keras_input(), then the output tensor from calling layer(input) is returned.

  • NULL or missing, then a Layer instance is returned.

Examples

Apply it as a non-trainable preprocessing layer on 3 audio tracks of 1 channel, 10 seconds and sampled at 16 kHz.

layer <- layer_stft_spectrogram(
  mode = 'log',
  frame_length = 256,
  frame_step = 128, # 50% overlap
  fft_length = 512,
  window = "hann",
  padding = "valid",
  trainable = FALSE # non-trainable, preprocessing only)
)
random_uniform(shape=c(3, 160000, 1)) |> layer() |> op_shape()
## shape(3, 1249, 257)

Apply it as a trainable processing layer on 3 stereo audio tracks of 2 channels, 10 seconds and sampled at 16 kHz. This is initialized as the non-trainable layer, but then can be trained jointly within a model.

layer <- layer_stft_spectrogram(
  mode = 'log',
  frame_length = 256,
  frame_step = 128,   # 50% overlap
  fft_length = 512,
  window = "hamming", # hamming windowing function
  padding = "same",   # padding to preserve the time dimension
  trainable = TRUE,   # trainable, this is the default in keras
)
random_uniform(shape=c(3, 160000, 2)) |> layer() |> op_shape()
## shape(3, 1250, 514)

Similar to the last example, but add an extra dimension so the output is an image to be used with image models. We apply this here on a signal of 3 input channels to output an image tensor, hence is directly applicable with an image model.

layer <- layer_stft_spectrogram(
  mode = 'log',
  frame_length = 256,
  frame_step = 128,
  fft_length = 512,
  padding = "same",
  expand_dims = TRUE  # this adds the extra dimension
)
random_uniform(shape=c(3, 160000, 3)) |> layer() |> op_shape()
## shape(3, 1250, 257, 3)

Raises

ValueError: If an invalid value is provided for ⁠"mode⁠", ⁠"scaling⁠", ⁠"padding⁠", or other input arguments. TypeError: If the input data type is not one of ⁠"float16⁠", ⁠"float32⁠", or ⁠"float64⁠".

Input Shape

A 3D tensor of shape ⁠(batch_size, time_length, input_channels)⁠, if data_format=="channels_last", and of shape ⁠(batch_size, input_channels, time_length)⁠ if data_format=="channels_first", where time_length is the length of the input signal, and input_channels is the number of input channels. The same kernels are applied to each channel independently.

Output Shape

If data_format=="channels_first" && !expand_dims, a 3D tensor: ⁠(batch_size, input_channels * freq_channels, new_time_length)⁠ If data_format=="channels_last" && !expand_dims, a 3D tensor: ⁠(batch_size, new_time_length, input_channels * freq_channels)⁠ If data_format=="channels_first" && expand_dims, a 4D tensor: ⁠(batch_size, input_channels, new_time_length, freq_channels)⁠ If data_format=="channels_last" && expand_dims, a 4D tensor: ⁠(batch_size, new_time_length, freq_channels, input_channels)⁠

where new_time_length depends on the padding, and freq_channels is the number of FFT bins (fft_length %/% 2 + 1).

See Also

Other audio preprocessing layers:
layer_mel_spectrogram()

Other preprocessing layers:
layer_auto_contrast()
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_equalization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_max_num_bounding_boxes()
layer_mel_spectrogram()
layer_mix_up()
layer_normalization()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_solarization()
layer_string_lookup()
layer_text_vectorization()

Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()


rstudio/keras documentation built on Feb. 4, 2025, 1:11 p.m.