name |
str , the registered name of the DatasetBuilder (the snake case
version of the class name). This can be either "dataset_name" or
"dataset_name/config_name" for datasets with BuilderConfig s.
As a convenience, this string may contain comma-separated keyword
arguments for the builder. For example "foo_bar/a=True,b=3" would use
the FooBar dataset passing the keyword arguments a=True and b=3
(for builders with configs, it would be "foo_bar/zoo/a=True,b=3" to
use the "zoo" config and pass to the builder keyword arguments a=True
and b=3 ).
|
split |
tfds.Split or str , which split of the data to load. If None,
will return a dict with all splits (typically tfds.Split.TRAIN and
tfds.Split.TEST ).
|
data_dir |
str (optional), directory to read/write data.
Defaults to "~/tensorflow_datasets".
|
batch_size |
int , if set, add a batch dimension to examples. Note that
variable length features will be 0-padded. If
batch_size=-1 , will return the full dataset as tf.Tensor s.
|
download |
bool (optional), whether to call
tfds.core.DatasetBuilder.download_and_prepare
before calling tf.DatasetBuilder.as_dataset . If False , data is
expected to be in data_dir . If True and the data is already in
data_dir , download_and_prepare is a no-op.
|
shuffle_files |
bool , whether to shuffle the input files.
Defaults to False .
|
as_supervised |
bool , if True , the returned tf.data.Dataset
will have a 2-tuple structure (input, label) according to
builder.info.supervised_keys . If False , the default,
the returned tf.data.Dataset will have a dictionary with all the
features.
|
decoders |
Nested dict of Decoder objects which allow to customize the
decoding. The structure should match the feature structure, but only
customized feature keys need to be present. See
the guide
for more info.
|
read_config |
tfds.ReadConfig , additional options to configure the input pipeline
(e.g. seed , num parallel reads ,...).
|
builder_kwargs |
dict (optional), keyword arguments to be passed to the
tfds.core.DatasetBuilder constructor. data_dir will be passed
through by default.
|
download_and_prepare_kwargs |
dict (optional) keyword arguments passed to
tfds.core.DatasetBuilder.download_and_prepare if download=True . Allow
to control where to download and extract the cached data. If not set,
cache_dir and manual_dir will automatically be deduced from data_dir.
|
as_dataset_kwargs |
dict (optional), keyword arguments passed to
tfds.core.DatasetBuilder.as_dataset .
|
try_gcs |
bool , if True, tfds.load will see if the dataset exists on
the public GCS bucket before building it locally.
|