Description Usage Arguments Value
Using the log Manifold Parzen windows (MParzen) Gaussian KDE.
1 | scmsMParzen(Y0, X, model, sigma, h, r = NULL, minCos = 0.01, maxIter = 100L)
|
Y0 |
Initial points, an n-by-M matrix. |
X |
Data, an n-by-N matrix. |
model |
Top d-th order local covariance structure; output of 'MParzenTrain()'. |
sigma |
Maximum noise level added to the normal space of each kernel, i.e. marginal standard deviation of an isotropic Gaussian. Can be zero. |
h |
Bandwidth for isotropic Gaussian kernel density estimation, a scalar. Determines step size. |
r |
Radius of nearest neighbors to use in evaluating density and derivatives. Default to use all data. |
minCos |
Convergence criterion, cosine of the angle between gradient and its component in the "local normal space". |
maxIter |
Maximum number of iterations. |
A list: 'Y', the final points; 'cosNormal', convergence score; 'updatedPoints', the number of updated points per update.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.