scmsMParzen: MParzen KDE-based Subspace Constrained Mean Shift

Description Usage Arguments Value

View source: R/SCMS.R

Description

Using the log Manifold Parzen windows (MParzen) Gaussian KDE.

Usage

1
scmsMParzen(Y0, X, model, sigma, h, r = NULL, minCos = 0.01, maxIter = 100L)

Arguments

Y0

Initial points, an n-by-M matrix.

X

Data, an n-by-N matrix.

model

Top d-th order local covariance structure; output of 'MParzenTrain()'.

sigma

Maximum noise level added to the normal space of each kernel, i.e. marginal standard deviation of an isotropic Gaussian. Can be zero.

h

Bandwidth for isotropic Gaussian kernel density estimation, a scalar. Determines step size.

r

Radius of nearest neighbors to use in evaluating density and derivatives. Default to use all data.

minCos

Convergence criterion, cosine of the angle between gradient and its component in the "local normal space".

maxIter

Maximum number of iterations.

Value

A list: 'Y', the final points; 'cosNormal', convergence score; 'updatedPoints', the number of updated points per update.


rudazhang/plmr documentation built on Aug. 30, 2021, 5:43 p.m.