View source: R/outlier_analysis_functions.R
outlier_heatmap | R Documentation |
With the grouptablist generated by count_outliers - run through and run a fisher exact test to get the p.value for the difference in outlier count for each feature in each of your comparisons
outlier_heatmap(outlier_analysis_out, analysis_num = NULL, counttab, metatable, fdrcutoffvalue = 0.1)
outlier_analysis_out |
the full outlier_analysis data objet |
analysis_num |
DEFAULT: NULL; if you only want to plot the heatmap for a particular analysis, enter number of that analysis |
counttab |
the raw data before outlier analysis |
metatable |
the complete metatable that was used to generate the comparisons, will be used for annotation of the heatmap |
fdrcutoffvalue |
DEFAULT: 0.1; The FDR value for significance |
outputs a pdf with the heatmap in the current working directory
data("sample_phosphodata") reftable_function_out <- make_outlier_table(sample_phosphodata[1:1000,]) outliertab <- reftable_function_out$outliertab data("sample_annotationdata") groupings <- comparison_groupings(sample_annotationdata) count_outliers_out <- count_outliers(groupings, outliertab, aggregate_features = FALSE) grouptablist <- count_outliers_out$grouptablist fractiontab <- count_outliers_out$fractiontab outlier_analysis_out <- outlier_analysis(grouptablist, fraction_table = fractiontab) metatable <- sample_annotationdata counttab <- sample_phosphodata hm1 <- outlier_heatmap(outlier_analysis_out, analysis_num = NULL, fractiontab, metatable, fdrcutoffvalue = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.