| QUIC | R Documentation | 
QUadratic Inverse Covariance estimation
Estimates a sparse inverse covariance matrix using a combination of Newton's method and coordinate descent.
For details, please refer to https://cran.r-project.org/src/contrib/Archive/QUIC/QUIC_1.1.1.tar.gz
QUIC(
  S,
  rho,
  path = NULL,
  tol = 1e-04,
  msg = 1,
  maxIter = 1000,
  X.init = NULL,
  W.init = NULL
)
| S | Covariance matrix. A p by p symmetric matrix. | 
| rho | Regularization parameter. It can be a p by p matrix, a vector or scalar. | 
| path | If specified, then rho is scaled with the elements of path and the corresponding inverse covariance matrix estimation is carried out for each value. | 
| tol | Specifes the convergence tolerance. | 
| msg | Controls how verbose messages should be printed during execution. Valid value range: 0–4. | 
| maxIter | Specifies the maximum number of Newton iterations. | 
| X.init | The initial estimate for the regularized inverse covariance matrix. | 
| W.init | The inverse of initial estimate for the regularized inverse covariance matrix. | 
Matyas A. Sustik (package maintainer), Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. Cho-Jui Hsieh, Matyas A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar, Advances in Neural Information Processing Systems, vol. 24, 2011, p. 2330–2338.
http://www.cs.utexas.edu/users/sustik/papers/invcov.pdf
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.