knitr::opts_chunk$set( collapse = TRUE # comment = "#>" )
This is a tutorial outlining one of the basic ways of visualizing data with the chicagodata package, using SVI data from the CDC, a dataset of affordable housing units from Chicago's data portal, and tmaps.
### load the relevant packages library(ChicagoPackage) library(tmap) library(sf) library(rgeos) library(rgdal) library(spdep) library(dplyr) ###download csv from the Chicago data portal and save it into the relevant working directory #https://data.cityofchicago.org/Community-Economic-Development/Affordable-Rental-Housing-Developments/s6ha-ppgi
### loading the affordable housing csv into an sf object using csv_to_sf afhouse <- read.csv("https://data.cityofchicago.org/api/views/s6ha-ppgi/rows.csv?accessType=DOWNLOAD") afhouse <- dplyr::filter(afhouse, !is.na(Latitude)) affordable_housing <- sf::st_as_sf(afhouse, coords = c("Longitude", "Latitude"), crs = 4326)
###now lets load the svi data, an sf object by tract chicago_svi <- chicago_svi class(chicago_svi)
###now lets create a basic map using R_PL_THEME1, one of the SVI summary statistics, and the affordable housing units tm_shape(chicago_svi) + tm_polygons("R_PL_THEME1", palette = "Blues") + tm_shape(affordable_housing) + tm_dots()
Great job!
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.